全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Liar Hypodox: A Truth-Teller’s Guide to Defusing Proofs of the Liar Paradox

DOI: 10.4236/ojpp.2019.92011, PP. 152-171

Keywords: Liar paradox, Hypodox, Truth, T-Schema, Substitution of Identicals

Full-Text   Cite this paper   Add to My Lib

Abstract:

It seems that the Truth-teller is either true or false, but there is no accepted principle determining which it is. From this point of view, the Truth-teller is a hypodox. A hypodox is a conundrum like a paradox, but consistent. Sometimes, accepting an additional principle will convert a hypodox into a paradox. Conversely, in some cases, retracting or restricting a principle will convert a paradox to a hypodox. This last point suggests a new method of avoiding inconsistency. This article provides a significant example. The Liar paradox can be defused to a hypodox by relatively minimally restricting three principles: the T-schema, substitution of identicals and universal instantiation. These restrictions are not arbitrary. For each, I identify the source of a contradiction given some presumptions. Then I propose each restriction as a reasonable way to deal with that source of contradiction.

References

[1]  Church, A. (1946). Review of “The Liar” by Alexandre Koyre. Journal of Symbolic Logic, 11, 131.
https://doi.org/10.2307/2268325
[2]  Clark, M. (2012). Paradoxes from A to Z (3rd ed.). Abingdon-on-Thames: Routledge.
https://doi.org/10.4324/9780203096413
[3]  Cook, R. T. (2012). The T-Schema Is Not a Logical Truth. Analysis, 72, 231-239.
https://doi.org/10.1093/analys/ans031
[4]  Cook, R. T. (2013). Paradoxes. Hoboken, NJ: John Wiley & Sons.
[5]  Eldridge-Smith, P. (2004). The Cretan Liar Paradox. In J. Lloyd-Jones, P. Dobrez, & L. Dobrez (Eds.), An ABC of Lying: Taking Stock in Interesting Times (pp. 72-92). Melbourne: Australian Scholarly.
[6]  Eldridge-Smith, P. (2007). Paradoxes and Hypodoxes of Time Travel. In J. Lloyd-Jones, P. Campbell, & P. Wylie (Eds.), Art and Time (pp. 172-89). Melbourne: Australian Scholarly.
https://philpapers.org/archive/ELDPAH.pdf
[7]  Eldridge-Smith, P. (2012). A Hypodox! A Hypodox! A Disingenuous Hypodox! The Reasoner, 6, 118-119.
[8]  Eldridge-Smith, P. (2012b). The Unsatisfied Paradox. The Reasoner, 6, 184-185.
[9]  Eldridge-Smith, P. (2015). Two Paradoxes of Satisfaction. Mind, 124, 85-119.
https://doi.org/10.1093/mind/fzu183
[10]  Eldridge-Smith, P. (2018). Pinocchio against the Semantic Hierarchies. Philosophia, 46, 817-830.
https://doi.org/10.1007/s11406-018-9948-y
[11]  Friedman, H., & Sheard, M. (1987) An Axiomatic Approach to Self-Referential Truth. Annals of Pure and Applied Logic, 33, 1-21.
https://doi.org/10.1007/s11406-018-9948-y
[12]  Halbach, V. (2014). Axiomatic Theories of Truth. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9781139696586
[13]  Kripke, S. (1975). Outline of a Theory of Truth. Journal of Philosophy, 72, 690-716.
https://doi.org/10.2307/2024634
[14]  Priest, G. (1979). The Logic of Paradox. Journal of Philosophical Logic, 8, 219-241.
https://doi.org/10.1007/BF00258428
[15]  Quine, W. V. O. (1976). The Ways of Paradox. In His the Ways of Paradox and Other Essays (2nd ed., pp. 1-18). Cambridge, MA: Harvard University Press.
[16]  Quine, W. V. O. (1995). Truth, Paradox and Gödel’s Theorem. In His Selected Logic Papers (Enlarged ed., pp. 236-241). Cambridge, MA: Harvard University Press.
[17]  Ripley, D. (2013). Revising up: Strengthening Classical Logic in the Face of Paradox. Philosophers’ Imprint, 13, 1-13.
[18]  Sainsbury, R. M. (2009). Paradoxes (3rd ed.). Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511812576
[19]  Skyrms, B. (1970). Return of the Liar: Three-Valued Logic and the Concept of Truth. American Philosophical Quarterly, 7, 153-161.
[20]  Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261-405.
[21]  Tarski, A. (1944). The Semantic Conception of Truth and the Foundations of Semantics. Philosophy and Phenomenological Research, 4, 341-376.
https://doi.org/10.2307/2102968
[22]  Yablo, S. (1993). Paradox without Self-Reference. Analysis, 53, 251-252.
https://doi.org/10.1093/analys/53.4.251

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133