全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Comparison of Microwave-Assisted Heating with Conventional Heating of Sweet Potato (Ipomoea batatas): Analysis of Monosaccharides and Disaccharides

DOI: 10.4236/fns.2019.103024, PP. 315-324

Keywords: Microwave-Assisted Heating, Sweat Potato, Saccharides, HPLC, Amino Column

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microwave-assisted heating has been recently used for extracting nutrient components from food materials. The technique sometimes invokes reactions from nutrient compounds during microwave-irradiation because it activates water molecules to reach a high temperature. The microwave-irradiation produced 5.3 g maltose per 100 g sweat potatoes in 30 s, which was faster than conventional heating (3.9 g maltose per 100 g in 300 s). Fructose level increased with the longer reaction time under microwave-irradiation (from 1.33 g to 1.65 g in 120s), but decreased with a longer reaction time under conventional heating (from 0.99 g to 0.83 g in 1200 s). This study demonstrates the differences in the reactions and products between microwave-irradiation and conventional heating.

References

[1]  Ercisli, S. (2009) Apricot Culture in Turkey. Scientific Research and Essays, 4, 715-719.
[2]  Erturk, Y., Ercisli, S., Haznedar, A. and Cakmakci, R. (2010) Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Rooting and Root Growth of Kiwifruit (Actinidia deliciosa) Stem Cuttings. Biological Research, 43, 91-98.
https://doi.org/10.4067/S0716-97602010000100011
[3]  Canan, I., Gundogdu, M., Seday, U., Oluk, C.A., Karasahin, Z., Eroglu, E.C. and Yazici, E. (2016) Determination of Antioxidant, Total Phenolic, Total Carotenoid, Lycopene, Ascorbic Acid, and Sugar Contents of Citrus Species and Mandarin Hybrids. Turkish Journal of Agriculture and Forestry, 40, 894-899.
https://doi.org/10.3906/tar-1606-83
[4]  Hricova, A., Fejer, J., Libiakova, G., Szabova, M., Gazo, J. and Gajdosova, A. (2016) Characterization of Phenotypic and Nutritional Properties of Valuable Amaranthus cruentus L. Mutants. Turkish Journal of Agriculture and Forestry, 40, 761-771.
https://doi.org/10.3906/tar-1511-31
[5]  Yazici, K. and Sahin, A. (2016) Characterization of Pomegranate (Punica granatum L.) Hybrids and Their Potential Use in Further Breeding. Turkish Journal of Agriculture and Forestry, 40, 813-824.
https://doi.org/10.3906/tar-1604-120
[6]  Woolfe, J.A. (1992) Sweet Potato an Untapped Food Resource. Cambridge University Press, Cambridge, UK.
[7]  Bradbury, J.H. and Holloway, W.D. (1988) Effect of Cooking on Nutrient Contents of Tropical Root Crops from the South Pacific. ACIAR Monograph Ser. No. 6, Canberra.
[8]  Gore, H.C. (1923) Formation of Maltose in Sweet Potatoes on Cooking. Industrial & Engineering Chemistry, 15, 938-940.
https://doi.org/10.1021/ie50165a031
[9]  Lai, Y.-C., Huang, C.-L. and Chan, C.-F. (2013) Studies of Sugar Composition and Starch Morphology of Baked Sweet Potatoes (Ipomoea Batatas (L.) Lam). Journal of Food Science and Technology, 50, 1193-1199.
https://doi.org/10.1007/s13197-011-0453-6
[10]  Balls, A.K., Walden, M.K. and Thompson, R.R. (1948) A Crystalline Beta-Amylase from Sweet Potatoes. Journal of Biological Chemistry, 173, 9-19.
http://www.jbc.org/content/173/1/9.full.pdf+html
[11]  Walter, J.R., Purcell, W.M. and Nelson, A.M. (1975) Effects of Amylolytic Enzymes on “Moistness” and Carbohydrate Changes of Baked Sweet Potato Cultivars. Journal of Food Science, 40, 793-796.
https://doi.org/10.1111/j.1365-2621.1975.tb00558.x
[12]  Roy, F. and Hedge, M.V. (1985) Rapid Method for Purification of Beta-Amylase from Ipomoea batatas. Journal of Chromatography, 324, 489-494.
https://doi.org/10.1016/S0021-9673(01)81354-6
[13]  Ikeyama, M. and Deobald, H.J. (1966) New Characteristic Alpha-Amylase in Sweet Potatoes. Journal of Agricultural and Food Chemistry, 14, 237-241.
https://doi.org/10.1021/jf60145a011
[14]  Uehara, K. and Mannen, S. (1979) Interaction of Sweet Potato α-Amylase with Its Reaction Product, Maltose. Journal of Biochemistry, 85, 105-113.
https://www.jstage.jst.go.jp/article/biochemistry1922/85/1/85_1_105/_pdf
https://doi.org/10.1093/oxfordjournals.jbchem.a132299
[15]  Takahata, Y., Noda, T. and Nagata, T. (1994) Amylase Stability and Starch Gelatinization during Heating on Varietal Differences in Maltose Content in Sweet Potatoes. Journal of Agricultural and Food Chemistry, 42, 2564-2569.
https://doi.org/10.1021/jf00047a036
[16]  Pressey, R. (1968) Invertase Inhibitors from Red Beet, Sugar Beet and Sweet Potato Roots. Plant Physiology, 43, 1430-1434.
https://doi.org/10.1104/pp.43.9.1430
[17]  Marshall, J.J. and Whelan, W.J. (1973) Removal of α-Glucoside Impurity from Crystalline Sweet-Potato β-Amylase. Analytical Biochemistry, 52, 642-646.
https://doi.org/10.1016/0003-2697(73)90073-0
[18]  Matsushita, K. and Uratani, I. (1974) Change in Invertase Activity of Sweet Potato in Response to Wounding and Purification and Properties of Its Invertases. Plant Physiology, 54, 60-66.
https://doi.org/10.1104/pp.54.1.60
[19]  Mineo, H., Nakazawa, T., Morikawa, N., Ishida, K., Ohmi, S., Machida, A., Noda, T., Fukushima, M. and Chiji, H. (2008) Feeding of Potato Starch Increases Maltose and Sucrose Activity Only in Duodenal Segment of the Small Intestine in Rats. Journal of Applied Glycoscience, 55, 203-209.
https://doi.org/10.5458/jag.55.203
[20]  Haung, G., Sheu, M., Chang, Y., Lu, T., Chang, H., Huang, S. and Lin, Y. (2008) Isolation and Characterisation of Invertase Inhibitor from Sweet Potato Storage Roots. Journal of the Science of Food and Agriculture, 88, 2615-2621.
https://doi.org/10.1002/jsfa.3380
[21]  Takahata, Y., Noda, T. and Sato, T. (1995) Changes in Carbohydrates and Enzyme Activities of Sweetpotato Lines during Storage. Journal of Agricultural and Food Chemistry, 43, 1923-1928.
https://doi.org/10.1021/jf00055a031
[22]  Herrero, M.A., Kremsner, J.M. and Kappe, C.O. (2008) Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry. Journal of Organic Chemistry, 73, 36-47.
https://doi.org/10.1021/jo7022697
[23]  De la Hoz, A. and Loupy, A. (2013) Microwaves in Organic Synthesis. Wiley-VCH, Weinheim, Germany, Vol. 1 & 2.
[24]  Corsaro, A., Chiacchio, U., Pistara, V. and Romeo, G. (2004) Microwave-Assisted Chemistry of Carbohydrates. Current Organic Chemistry, 8, 511-538.
https://doi.org/10.2174/1385272043485828
[25]  Richard, A. and Paquot, M. (2012) Conversion of Carbohydrates under Microwave Heating. In: Chang, C.-F., Ed., Carbohydrates—Comprehensive Studies on Glycobiology and Glycotechnology, IntechOpen, London, 22-36.
[26]  Tsubaki, S. and Azuma, J. (2011) Application of Microwave Technology for Utilization of Recalcitrant Biomass. In: Grundas, S., Ed., Advances in Induction and Microwave Heating of Mineral and organic Materials, IntechOpen, London, 697-722.
https://doi.org/10.5772/14040
[27]  Román-Leshkov, Y., Chheda, J.N. and Dumesic, J.A. (2006) Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312, 1933-1937.
https://doi.org/10.1126/science.1126337
[28]  Tsubaki, S., Onda, A., Yanagisawa, K. and Azuma, J. (2012) Microwave-Assisted Hydrothermal Hydrolysis of Maltose with Addition of Microwave Absorbing Agents. Procedia Chemistry, 4, 288-293.
https://doi.org/10.1016/j.proche.2012.06.040
[29]  Tsubaki, S., Oono, K., Onda, A., Yanagisawa, K. and Azuma, J. (2013) Comparative Decomposition Kinetics of Neutral Monosaccharides by Microwave and Induction Heating Treatments. Carbohydrate Research, 375, 1-4.
https://doi.org/10.1016/j.carres.2013.04.013
[30]  Moller, M., Harnisch, F. and Schroder, U. (2012) Microwave-Assisted Hydrothermal Degradation of Fructose and Glucose in Subcritical Water. Biomass and Bioenergy, 39, 389-398.
https://doi.org/10.1016/j.biombioe.2012.01.036
[31]  Angyal, S.J. (2001) The Lobry de Bruyn-Alberda van Ekenstein Transformation and Related Reactions. In: Stutz, E.A., Ed., Glycoscience: Epimerization, Isomerization and Rearrangement Reactions of Carbohydrates, Springer-Verlag, Berlin, Vol. 215, 1-14.
https://doi.org/10.1007/3-540-44422-X_1
[32]  Pagnotta, M., Pooley, C.L.F., Gurland, B. and Choi, M. (1993) Microwave Activation of the Mutarotation of α-D-Glucose: An Example of an Intrinsic Microwave Effect. Journal of Physical Organic Chemistry, 6, 407-411.
https://doi.org/10.1002/poc.610060705
[33]  Munegumi, T. and Goto, A. (2014) Microwave-Assisted Isomerization of Glucose to Fructose. Research Journal of Pharmaceutical Biological Chemical Science, 5, 206-212.
https://www.rjpbcs.com/2014_5.3.html
[34]  Capuano, E. and Vincenzo, F. (2011) Acrylamide and 5-Hydroxymethylfurfural (HMF): A Review on Metabolism, Toxicity, Occurrence in Food and Mitigation Strategies. LWT—Food Science and Technology, 44, 793-810.
https://doi.org/10.1016/j.lwt.2010.11.002
[35]  Zirbes, L., Nguyen, B.K., de Graaf, D.C., Meulenaer, B.D., Reybroeck, W., Haubruge, E. and Saegerman, C. (2013) Hydroxymethylfurfural: A Possible Emergent Cause of Honey Bee Mortality? Journal of Agricultural and Food Chemistry, 61, 11865-11870.
https://doi.org/10.1021/jf403280n

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133