Sandalwood (Santalum
album L.) is the second most expensive wood in the world. There are
approximately 16 species of sandalwood (S.
album,S.spicatum,S.austrocaledonicum,S.yasi,S.lanceolatum,S.ellipticum,S.macgregorii,S.insulare)occurring naturally
throughout Australia, India, Indonesia, Papua New Guinea and the islands of the
South Pacific. In India,S. album is found all over the country,
with over 90% of the area in Karnataka, Tamil Nadu, Kerala, Andhra Pradesh and
Telangana state. It is highly economic tropical tree species because of its
scented heartwood and heartwood oil. Several causes have been attributed to the
depletion of sandalwood population mainly amongst which theft is causing
negative effect on the quality of species by constant removal of superior
clones. The aim of this study was todetermine the genetic diversity of S.
References
[1]
IUCN (2007) IUCN Red List of Threatened Species. https://www.iucnredlist.org/
[2]
Kumarvelu, G., Bharathi, R.K., Jainaldeen, A. and Balraj, V.C. (2007) Resurrection of the Rare Aromatic Santalum album Population in Tamil Nadu, India. Proceedings of National Seminar, 23-31.
[3]
Rao, N.M., Ravikanth, G., Ganeshaiah, K.N., Rathore, T.S. and Shaanker, R.U. (2007) Assessing Threats and Identifying the Ecological Niche of Sandal Resoures to Identify “Hot-Spots” for in Situ Conservation in Southern India. Sandal Proceedings of National Seminar, 23-31.
[4]
Jones, C.G., Plummer, J.A. and Barbour, L. (2007) Non-Destructive Sampling of Indian Sandalwood (Santalum album L.) for Oil Content and Composition. Journal of Essential Oil Research, 19, 157-164. https://doi.org/10.1080/10412905.2007.9699250
[5]
Azeez, S.A., Nelson, R., Prasadbabu, A. and Rao, M.S. (2009) Genetic Diversity of Santalum album Using Random Amplified Polymorphic DNAs. African Journal of Biotechnology, 8, 2943-2947.
[6]
Murray, M.G. and Thompson, W.F. (1980) Rapid Isolation of High Molecular Weight Plant DNA. Nucleic Acid Research, 8, 4321-4325.
https://doi.org/10.1093/nar/8.19.4321
[7]
Fatima, T., Srivastava, A., Hanur, V.S. and Rao, S.M. (2018) An Effective Wood DNA Extraction Protocol for Three Economic Important Timber Species of India. American Journal of Plant Sciences, 9, 139-149.
https://doi.org/10.4236/ajps.2018.92012
[8]
Otieno, O.J., Omondi, S.F., Perry, A., Odee, W.D., Makatiani, E.T., Kiplagat, O. and Cavers, S. (2016) Development and Characterization of Microsatellite Markers for Osyris lanceolata Hochst. & Steud., an Endangered African Sandalwood Tree Species. Tropical Plant Research (An International Journal), 701-703.
http://www.tropicalplantresearch.com/archives/2016/vol3issue3/092.pdf
[9]
Bottin, L., Vaillant, A., Sire, P., Cardi, C. and Bouvet, M. (2005) Isolation and Characterization of Microsatellite Loci in Santalum austrocaledonicum, Santalaceae. Molecular Ecology Notes, 5, 800-802.
https://doi.org/10.1111/j.1471-8286.2005.01067.x
[10]
Emeline, L., Alexandre, V., Francoist, B.J. and Marc, B.J. (2006) Isolation and Characterization of Microsatellite Loci in Santalum insulare, Santalaceae. Molecular Ecology Notes, 653-655. https://doi.org/10.1111/j.1471-8286.2006.01279.x
[11]
Millar, M.A., Byrne, M. and Barbour, E. (2012) Characterization of Eleven Polymorphic Microsatellite DNA Markers for Australian Sandalwood (Santalum spicatum) (R. Br.) A. D.C. (Santalaceae). Conservation Genetics, 4, 51-53.
https://doi.org/10.1007/s12686-011-9473-9
[12]
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA Polymorphisms Amplifies by Arbitrary Primers Are Useful as Genetic Markers. Nucleic Acid Research, 313, 101-105.
https://www.ncbi.nlm.nih.gov/pubmed/1979162.
[13]
Ipek, A., Barut, E., Gulen, H. and Ipek, M. (2012) Assessment of Inter and Intra Cultivar Variations in Olive Using SSR Markers. Scientia Agricola, 69, 327-335.
https://doi.org/10.1590/S0103-90162012000500007
[14]
Peakall, R. and Smouse, P.E. (2012) GENALEX 6.5: Genetic Analysis in Excel. Genetic Analysis in Excel. Population Genetic Software for Teaching and Research— An Update. Bioinformatics (Oxford, England), 28, 2537-2539.
https://doi.org/10.1093/bioinformatics/bts460
[15]
Peakall, R. and Smouse, P.E. (2006) GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Molecular Ecology Notes, 6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
[16]
Yeh, F.C. and Yang, R. (1999) Microsoft Window-Based Freeware for Population Genetic Analysis (POPGENE Ver. 1.31). University of Alberta, Alberta.
[17]
Pritchard, J.K., Stephens, M. and Donelly, P. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 945-959.
[18]
Earl, D.A. and Vonholt, B.M. (2012) STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Consevation Genetic Resources, 4, 359-361.
https://doi.org/10.1007/s12686-011-9548-7
[19]
Rosenberg, N.A., Burke, T., Elo, K., Feldman, M.W. and Freidlin, P.J. (2001) Empirical Evaluation of Genetic Clustering Methods Using Multilocus Genotypes from 20 Chicken Breeds. Genetics, 159, 699-713.
[20]
Evanno, G., Regnaut, S. and Goudet, J. (2005) Detection the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
[21]
Ma, M., Lie, E., Meng, H., Wang, T., Xie, L., Shen, D., Zhou, X. and Lu, B. (2017) Cluster and Principal Component Analysis Based on SSR Markers of Amomum Tsao-Ko in Jinping Country of Yunnan Province. AIP Conference Proceedings, 1864, Article ID: 020070.
[22]
Nie, M. (1973) Molecular Evolution in Search of Itself. Molecular Evolutionary Genetics, Cell, 51, 343-344.
[23]
Nei, M. (1978) Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics, 89, 583-590.
[24]
Rao, N.M., Ganeshaiah, K.N. and Shaankar, R.U. (2007) Assessing Threats and Mapping Sandal Resources to Identify Genetic “Hot-Spot” for in Situ Conservation in Peninsular India. Conservation Genetics, 8, 925-935.
https://doi.org/10.1007/s10592-006-9247-1
[25]
Jones, B.L., Waycott, M., Heather, L.A., Calladine, R.A. and Page, T. (2010). Isolation and Characterization of Microsatellite Loci in Santalum lanceolatum and Santalum leptocladum (Santalaceae). American Journal of Botany, 97, e97-e98.
https://doi.org/10.3732/ajb.1000213
[26]
Guan, X., Yuyama, N., Stewart, A., Ding, C., Xu, N., Kiyoshi, T. and Cai, H. (2017) Genetic Diversity and Structure of Lolium Species Surveyed on Nuclaer Simple Sequence Repeat and Cytoplasmic Markers. Frontiers in Plant Sciences, 8, 584.
https://doi.org/10.3389/fpls.2017.00584
[27]
Ratnaningrum, Y.W.N., Indrioko, S., Faridah, E. and Syahbudin, A. (2017) Gene Flow and Selection Evidence of Sandalwood (Santalum album) under Various Population Structures in Gunung Sewu (Java, Indonesia), and Its Effects on Genetic Differentiation. Biodiversitas, 18, 1493-1505.
[28]
Wright, S. (1965). The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution, 19, 395-420.
https://doi.org/10.1111/j.1558-5646.1965.tb01731.x
[29]
Suma, T.B. and Balasundaran, B. (2003) Isozyme Variation in Five Provenances of Santalum album in India. Australian Journal of Botany, 51, 243-249.
https://doi.org/10.1071/BT02094
[30]
Mohammad, N., Mahesh, S., Kumar, P. and Ansari, S.A. (2012) Genotyping of Santalum album L. Accessions through Cross-Species Transferability of SSR Markers of Santalum austrocaledonicum and Santalum insulare. Sandalwood Research Newsletter, 1-4.
[31]
Byrne, M., Marquez-Garcia, M.I., Uren, T., Smith, D.S. and Moran, G.G. (1996) Conservation and Genetic Diversity of Microsatellite Loci in the Genus Eucalyptus. Australian Journal of Botany, 44, 331-341. https://doi.org/10.1071/BT9960331
[32]
Patel, D.M., Fougat, R.S., Sakure, A.A., Kumar, S., Kumar, M. and Mistry, J.G. (2016) Detection of Genetic Variation in Sandalwood Using Various DNA Markers. 3 Biotech, 6, 55. https://doi.org/10.1007/s13205-016-0391-0