全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

关于丢番图方程(an)x+(bn)y=(cn)z
On the Diophantine Equation (an)x

DOI: 10.16205/j.cnki.cama.2018.0009

Keywords: Je'{s}manowicz猜想, 丢番图方程, Fibonacci序列
Je'{s}manowicz' conjecture
, Diophantine equation, Fibonacci sequence

Full-Text   Cite this paper   Add to My Lib

Abstract:

设$n,a,b,c$是正整数, $\gcd(a,b,c)=1,\ a,b\geqslant 3$, 且丢番图方程$a^{x}+b^{y}=c^{z}$只有正整数解$(x,y,z)=(1,1,1)$. 证明了若$(x,y,z)$是丢番图方程$(an)^{x}+(bn)^{y}=(cn)^{z}$ 的正整数解且$(x,y,z)\neq (1,1,1)$, 则$y
Let $n,a,b,c$ be positive integers with $\gcd(a,b,c)=1,\ a,b\geqslant 3$ and the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(1,1,1)$. In this paper, the authors prove that if $(x,y,z)$ is a positive integer solution of the Diophantine equation $(an)^{x}+(bn)^{y}=(cn)^{z}$ with $(x,y,z)\neq (1,1,1)$, then $y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133