%0 Journal Article %T 关于丢番图方程(an)x+(bn)y=(cn)z<br>On the Diophantine Equation (an)x %A 孙翠芳 %A 汤 敏 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0009 %X 设$n,a,b,c$是正整数, $\gcd(a,b,c)=1,\ a,b\geqslant 3$, 且丢番图方程$a^{x}+b^{y}=c^{z}$只有正整数解$(x,y,z)=(1,1,1)$. 证明了若$(x,y,z)$是丢番图方程$(an)^{x}+(bn)^{y}=(cn)^{z}$ 的正整数解且$(x,y,z)\neq (1,1,1)$, 则$y<br>Let $n,a,b,c$ be positive integers with $\gcd(a,b,c)=1,\ a,b\geqslant 3$ and the Diophantine equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(1,1,1)$. In this paper, the authors prove that if $(x,y,z)$ is a positive integer solution of the Diophantine equation $(an)^{x}+(bn)^{y}=(cn)^{z}$ with $(x,y,z)\neq (1,1,1)$, then $y %K Je'{s}manowicz猜想 %K 丢番图方程 %K Fibonacci序列< %K br> %K Je'{s}manowicz' conjecture %K Diophantine equation %K Fibonacci sequence %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A109&flag=1