|
- 2018
由 n×n 上三角Toeplitz矩阵所构成的 超循环矩阵族
|
Abstract:
在Feldman和Costakis所做的结果的基础上, 进一步考虑了超循环算子族的一些问题. 设$\mathcal{T}=(T_{1},\cdots,T_{m})$是一组由$m$个上三角Toeplitz复矩阵构成的矩阵组, 给出了一个$\mathcal{T}$是超循环的充分必要条件.
In this paper, based on the results of Feldman and Costakis, the authors consider the problem of hypercyclic tuple operators. Let $\mathcal{T}=(T_{1},\cdots,T_{m})$ be a tuple of $n\times n$ complex upper triangular Toeplitz matrices. A necessary and sufficient condition for the tuple to be hypercyclic is obtained.