%0 Journal Article %T 由 n×n 上三角Toeplitz矩阵所构成的 超循环矩阵族<br>Hypercyclic Tuple of n\times n Upper Triangular Toeplitz Matrices %A 舒永录 %A 王 伟 %A 王兴忠 %J 数学年刊(A辑) %D 2018 %R 10.16205/j.cnki.cama.2018.0005 %X 在Feldman和Costakis所做的结果的基础上, 进一步考虑了超循环算子族的一些问题. 设$\mathcal{T}=(T_{1},\cdots,T_{m})$是一组由$m$个上三角Toeplitz复矩阵构成的矩阵组, 给出了一个$\mathcal{T}$是超循环的充分必要条件.<br>In this paper, based on the results of Feldman and Costakis, the authors consider the problem of hypercyclic tuple operators. Let $\mathcal{T}=(T_{1},\cdots,T_{m})$ be a tuple of $n\times n$ complex upper triangular Toeplitz matrices. A necessary and sufficient condition for the tuple to be hypercyclic is obtained. %K 超循环算子 %K 超循环算子族 %K 上三角Toeplitz复矩阵< %K br> %K Hypercyclic operator %K Hypercyclic tuple %K Upper triangular Toeplitz Matrix %U http://www.camath.fudan.edu.cn/camacn/ch/reader/view_abstract.aspx?file_no=39A105&flag=1