|
- 2016
判断有理系数多项式方程是否存在实数解的初等方法
|
Abstract:
摘要 给出判断有理系数多元多项式方程组是否存在实数解的初等方法,从而证明多元多项式方程组的实解存在性可在有限步内自动判定.基于此,给出判定有理系数多元多项式方程组是否存在实数解的算法.
[1] | Yang L. Recent advances on determining the number of real roots of parametric polynomials[J]. Journal of Symbolic Computation, 1999, 28(1): 225-242. |
[2] | Dubé T W. The structure of polynomial ideals and Grobner bases[J]. SIAM Journal on Computing, 1990, 19(4): 750-773. |
[3] | Tarski A. A decision method for elementary algebra and geometry[M]. 2nd ed. Berkeley: Univ of Calif Press Berkeley, 1951. |
[4] | Ben-Or M, Kozen D, Reif J. The complexity of elementary algebra and geometry[J]. Journal of Computer and System Sciences, 1984, 32(2): 251-264. |
[5] | Yang L, Hou X, Xia B. A complete algorithm for automated discovering of a class of inequality-type theorems[J]. Science in China Series F Information Sciences, 2001, 44(1): 33-49. |
[6] | 陈玉福. 计算机代数讲义[M].北京:高等教育出版社,2009. |
[7] | 王东明,夏壁灿,李子明.计算机代数[M].北京:清华大学出版社,2007. |
[8] | Mehlhorn K, Sagraloff M. A deterministic algorithm for isolating real roots of a real polynomial[J]. Journal of Symbolic Computation, 2011, 46(1): 70-90. |
[9] | Cheng J S, Gao X S, Guo L. Root isolation of zero-dimensional polynomial systems with linear univariate representation[J]. Journal of Symbolic Computation, 2012, 47(7): 843-858. |
[10] | Wang D. Automated deduction in geometry[M]. Berlin: Springer-Verlag, 1998. |
[11] | Yang L, Hou X R, Zeng Z B. A complete discrimination system for polynomials[J]. 中国科学 E 辑 (英文版), 1996, 6: 8.</p> |
[12] | <p> Cox D A, Little J, O'Shea D. Ideals,varieties,and algorithms[M]. NewYork: Springer, 2007. |