|
- 2016
求CP的SU(2)轨道的根分布方法
|
Abstract:
摘要 从根分布的角度,对齐性二维球面分类结果给出比Bando和Ohnita(J Math Soc Japan,1987,39:477)更加明显的刻画,求出决定齐性二维球面的SU(2)轨道的李群多项式表示的显式表达式,证明复射影空间中SU(2)轨道的维数取决于一个对应的扩大复平面系数上的一元n次方程的重根和负共轭倒数根对分布,把SU(2)轨道维数归结为黎曼球面上n个点是否重合或成为对径点的问题。也初步研究了SU(2)三维轨道性质与根分布的关系。
[1] | Li H Z,Wang C P,Wu F E.The classification of homogeneous 2-spheres in CP<sup>n</sup> [J].Asian Journal of Mathematics,2001,5(1):93-108. |
[2] | <p> Bando S,Ohnita Y.Minimal 2-spheres with constant curvature in CP<sup>n</sup> [J].J Math Soc Japan,1987,39(3):477-487. |
[3] | Fei J,Jiao X X,Xiao L, et al.On the classification of homogeneous 2-spheres in complex Grassmannians[J].Osaka J Math, 2013,50:135-152. |
[4] | Jiao X X,Peng J G.On minimal two-spheres in G(2; 4)[J].Front Math China, 2010,5(2):297-310. |
[5] | Fei J,Jiao X X,Xu X W.On conformal minimal 2-spheres in complex Grassmann manifold G(2; <em>n</em>)[J].Proc Indian Acad Sci(Math Sci),2011,121(2):181-199. |
[6] | Shafarevich I R.Basic algebraic geometry[M].New York: Springer-Verlag,1990.</p> |