|
- 2015
一个参量化Hilbert型积分不等式及其应用
|
Abstract:
摘要 通过引入多个参数,应用权函数方法、实分析技巧和拉普拉斯积分变换, 给出一个参量化Hilbert型积分不等式及其等价式, 证明它们的常数因子是最佳的. 作为应用, 通过选取一些特殊参数值, 获得了一些有意义的结果.
[1] | Hardy G H, Littlewood J E, Polya G. Inequalities[M]. Cambridge: Cambridge Univ Press, 1952. |
[2] | Hardy G H. Note on a theorem of Hilbert concerning series of positive term[J]. Proc London Math Soc,1925,23:45-46. |
[3] | Yang B C. Hilbert-type integral inequality with non-homogeneous kernel[J]. Journal of Shanghai University:Natural Science, 2011, 17(5):603-605(in Chinese). |
[4] | Shu B P, Chen D L. Complex-variable function and integral transform[M].Beijing:Higher Education Press, 2003. |
[5] | Kuang J C. Introduction to real analysis[M]. Changsha:Hunan Edueation Press,1996. |
[6] | Kuang J C. Applied Inequalities[M]. 3rd ed. Jinan: Shandong Science and Technology Press,2004. |
[7] | Liu Q, Sun W B. A Hilbert-type integral inequality with the mixed kernel of multi-parameters[J]. C R Acad Sci,2013,1351:605-611. |
[8] | Liu Q, Long S C. A Hilbert-type integral inequality with the kernel of hyperbolic cosecant function[J]. Acta Mathematics Sinica, Chinese Series, 2013, 56(1):97-104(in Chinese). |
[9] | Mitrinovic D S,Pecaric J E,Fink A M. Inequalities involving functions and their integrals and derivertives[M].Boston:Kluwer Academic Publishers,1991. |
[10] | Yang B C.On the norm of a Hilbert's type linear operator and applications[J].J Math Anal Appl,2007,325: 529-541. |
[11] | Yang B C. A survey of the study of Hilbert-tpye inequalities with parameters[J]. Advances in Mathematics, 2009, 38(3):257-258(in Chinese). |
[12] | Zhong W Y, Yang B C. On multiple's Hardy-Hilbert integral inequality with kernel[J], Joural of inequalities and applications, 2007,Art.ID 27962. |