|
- 2015
两个新的积分不等式和一个算子范数关系式
|
Abstract:
摘要 利用权函数方法和拉普拉斯积分变换, 给出2个新的积分不等式和它们的等价式, 证明它们的常数因子是最佳的. 作为应用, 一方面通过选取一些特殊参数值, 获得一些有意义的结果;另一方面定义3个积分算子, 建立它们之间的一个范数关系式.
[1] | Hardy G H. Note on a theorem of Hilbert concerning series of positive term[J]. Proc London Math Soc, 1925,23:45-46. |
[2] | Hardy G H, Littlewood J E, Polya G. Inequalities[M]. Cambridge: Cambridge Univ Press, 1952. |
[3] | Mitrinovic D S,Pecaric J E,Fink A M. Inequalities involving functions and their integrals and derivertives[M]. Boston:Kluwer Academic Publishers, 1991. |
[4] | Liu Q, Long S C. A Hilbert-type integral inequality with the kernel of hyperbolic cosecant function[J]. Acta Mathematics Sinica:Chinese Series, 2013, 56(1):97-104(in Chinese). |
[5] | Yang B C. Hilbert-type integral inequality with non-homogeneous kernel[J]. Journal of Shanghai University:Natural Science, 2011, 17(5):603-605(in Chinese). |
[6] | Kuang J C. Introduction to real analysis[M]. Changsha:Hunan Edueation Press, 1996. |
[7] | Yang B C. On the norm of a Hilbert's type linear operator and applications[J].J Math Anal Appl, 2007, 325:529-541. |
[8] | Shu B, Chen D L. Complex-variable function and integral transform[M]. Beijing: Higher Education Press, 2003. |
[9] | <p> Weyl H. Singulare integral Gleichungenn mit besonderer Berucksichtigung des Fourierschen integral theorems[M]. Gottingen: Inaugeral-Dissertation,1908. |
[10] | Yang B C. A survey of the study of Hilbert-tpye inequalities with parameters[J]. Advances in Mathematics, 2009, 38(3):257-258(in Chinese). |
[11] | Liu Q,Sun W B. A Hilbert-type integral inequality with the mixed kernel of multi-parameters[J]. C R Acad Sci 1,2013, 351:605-611. |
[12] | Kuang J C. Applied inequalities[M]. 3rd ed. Jinan:Shandong Science and Technology Press, 2004.</p> |
[13] | Zhong W Y, Yang B C. On multiple's Hardy-Hilbert integral inequality with kernel[J]. Journal of Inequalities and Applications, 2007:27 962. |