全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一类潜伏期有传染力的离散SEIR传染病模型的Neimark-Sacker分岔
An analysis of Neimark-Sacker bifurcation for a discrete SEIR epidemic model with infectious force in latent period

DOI: 10.11778/j.jdxb.2016.06.014

Keywords: 离散SEIR模型,稳定性,中心流形定理,Neimark-Sacker分岔
SEIR epidemic model
,stability,center manifold theorem,Neimark-Sacker bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 目的:传染病模型的研究能更好地显示疾病发展过程,揭示其流行规律,寻求对其预防及控制的最优策略.方法:欧拉向前差分法、Neimark-Sacker分岔准则、 Kuznetsov‘s理论和中心流形定理.结果:构造了1个新的离散的潜伏期具有传染力的SEIR传染病模型.主要研究离散SEIR传染病模型的动力学性质、讨论系统平衡点的存在性,并进一步分析系统无病平衡点的稳定性.结论:对gEIR传染模型在无病平衡点处Neimark-Sacker分岔的存在性、稳定性和方向进行详细的理论分析后,通过数值模拟验证了结论的正确性.

References

[1]  SONG Y L, HAN Y Y, ZHANG T H. Stability and Hopf bifurcation in a model of gene expression with distributed time delays[J]. Applied Mathematics and Computation, 2014, 243(243):398-412.
[2]  DU W J, ZHANG J G, YU J N, et al. An analysis of Neimark-scker bifurcation for a new three-dimensional discrete Lorenz-like system[J]. Journal of SichuanUniversity (Natural Science Edition), 2015, 52(6):1297-1302.
[3]  KLOEDEN P E, PÖTZSCHE C. Nonautonomous bifurcation scenarios in SIR models[J]. Mathematical Methods in the Applied Sciences, 2015,38(16):3495-3518.
[4]  杜文举,张建刚,俞建宁,等. 三维离散类Lorenz系统的Neimark-Sacker分岔[J]. 四川大学报(自然科学版), 2015,52(6):1297-1302.
[5]  NAWROCKI D. Entropy, bifurcation and dynamic market disequilibrium[J]. Financial Review, 1984, 19(2):266-284.
[6]  HE Z M, QIU J. Neimark-Sacker Bifurcation of a rational difference equation[J]. Journal of Difference Equations and Applications, 2013, 19(9):1513-1522.
[7]  XIN B G, CHEN T, MA J H. Neimark-Sacker bifurcation in a discrete-time financial system[J]. Discrete Dynamics in Nature and Society, 2010, 2010(405639):405639.
[8]  XIN B G, WU Z H. Neimark-Sacker bifurcation analysis and 0-1 chaos test of an interactions model between industrial production and environmental quality in a closed area[J]. Sustainability, 2015, 7(8):10191-10209.
[9]  王冰杰. 基于潜伏期有传染力的SEIR传染病模型的控制策略[J]. 东北师范大学学报(自然科学版), 2014,46(1):28-32.
[10]  WANG B J. Control strategies of an SEIR epidemic model with infectious force in latent period[J]. Journal of Northeast Normal University (Natural Science Edition), 2014, 46(1):28-32.
[11]  LI L P, HUANG L H. Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems[J]. Journal of Mathematical Analysis and Applications, 2014,411(1):83-94.
[12]  BALANOV Z, HU Q W, KRAWCEWICZ W. Global Hopf bifurcation of differential equations with threshold type state-dependent delay[J]. J Differential Equations, 2014, 257(7):2622-2670.
[13]  WANG F X. Bifurcations of nonlinear normal modes via the configuration domain and the time domain shooting methods[J]. Commun Nonlinear Sci Numer Simulat, 2015,20(2): 614-628.
[14]  PANDEY V, SINGH S. Detailed bifurcation analysis with a simplified model for advance heavy water reactor system[J]. Commun Nonlinear Sci Numer Simulat, 2015,20(1):186-198.
[15]  LLIBRE J, VALLS C. Hopf bifurcation of a generalized Moon-Rand system[J]. Commun Nonlinear Sci Numer Simulat, 2015, 20(3):1070-1077.
[16]  WANG C, LI X. Further investigations into the stability and bifurcation of a discrete predator-prey model[J]. Journal of Mathematical Analysis and Applications, 2015,422(2):920-939.
[17]  GURCAN F, KARTAL S, OZTURK I, et al, Stability and bifurcation analysis of a mathematical model for tumor-immune interaction with piecewise constant arguments of delay[J]. Chaos, Solitons & Fractals, 2014, 68(24):169-179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133