|
- 2016
一类潜伏期有传染力的离散SEIR传染病模型的Neimark-Sacker分岔
|
Abstract:
摘要 目的:传染病模型的研究能更好地显示疾病发展过程,揭示其流行规律,寻求对其预防及控制的最优策略.方法:欧拉向前差分法、Neimark-Sacker分岔准则、 Kuznetsov‘s理论和中心流形定理.结果:构造了1个新的离散的潜伏期具有传染力的SEIR传染病模型.主要研究离散SEIR传染病模型的动力学性质、讨论系统平衡点的存在性,并进一步分析系统无病平衡点的稳定性.结论:对gEIR传染模型在无病平衡点处Neimark-Sacker分岔的存在性、稳定性和方向进行详细的理论分析后,通过数值模拟验证了结论的正确性.
[1] | SONG Y L, HAN Y Y, ZHANG T H. Stability and Hopf bifurcation in a model of gene expression with distributed time delays[J]. Applied Mathematics and Computation, 2014, 243(243):398-412. |
[2] | DU W J, ZHANG J G, YU J N, et al. An analysis of Neimark-scker bifurcation for a new three-dimensional discrete Lorenz-like system[J]. Journal of SichuanUniversity (Natural Science Edition), 2015, 52(6):1297-1302. |
[3] | KLOEDEN P E, PÖTZSCHE C. Nonautonomous bifurcation scenarios in SIR models[J]. Mathematical Methods in the Applied Sciences, 2015,38(16):3495-3518. |
[4] | 杜文举,张建刚,俞建宁,等. 三维离散类Lorenz系统的Neimark-Sacker分岔[J]. 四川大学报(自然科学版), 2015,52(6):1297-1302. |
[5] | NAWROCKI D. Entropy, bifurcation and dynamic market disequilibrium[J]. Financial Review, 1984, 19(2):266-284. |
[6] | HE Z M, QIU J. Neimark-Sacker Bifurcation of a rational difference equation[J]. Journal of Difference Equations and Applications, 2013, 19(9):1513-1522. |
[7] | XIN B G, CHEN T, MA J H. Neimark-Sacker bifurcation in a discrete-time financial system[J]. Discrete Dynamics in Nature and Society, 2010, 2010(405639):405639. |
[8] | XIN B G, WU Z H. Neimark-Sacker bifurcation analysis and 0-1 chaos test of an interactions model between industrial production and environmental quality in a closed area[J]. Sustainability, 2015, 7(8):10191-10209. |
[9] | 王冰杰. 基于潜伏期有传染力的SEIR传染病模型的控制策略[J]. 东北师范大学学报(自然科学版), 2014,46(1):28-32. |
[10] | WANG B J. Control strategies of an SEIR epidemic model with infectious force in latent period[J]. Journal of Northeast Normal University (Natural Science Edition), 2014, 46(1):28-32. |
[11] | LI L P, HUANG L H. Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems[J]. Journal of Mathematical Analysis and Applications, 2014,411(1):83-94. |
[12] | BALANOV Z, HU Q W, KRAWCEWICZ W. Global Hopf bifurcation of differential equations with threshold type state-dependent delay[J]. J Differential Equations, 2014, 257(7):2622-2670. |
[13] | WANG F X. Bifurcations of nonlinear normal modes via the configuration domain and the time domain shooting methods[J]. Commun Nonlinear Sci Numer Simulat, 2015,20(2): 614-628. |
[14] | PANDEY V, SINGH S. Detailed bifurcation analysis with a simplified model for advance heavy water reactor system[J]. Commun Nonlinear Sci Numer Simulat, 2015,20(1):186-198. |
[15] | LLIBRE J, VALLS C. Hopf bifurcation of a generalized Moon-Rand system[J]. Commun Nonlinear Sci Numer Simulat, 2015, 20(3):1070-1077. |
[16] | WANG C, LI X. Further investigations into the stability and bifurcation of a discrete predator-prey model[J]. Journal of Mathematical Analysis and Applications, 2015,422(2):920-939. |
[17] | GURCAN F, KARTAL S, OZTURK I, et al, Stability and bifurcation analysis of a mathematical model for tumor-immune interaction with piecewise constant arguments of delay[J]. Chaos, Solitons & Fractals, 2014, 68(24):169-179. |