|
- 2018
一类具有两个离散时滞的HTLV-1病毒模型动力学分析
|
Abstract:
摘要 目的:研究一类具有细胞内时滞和CTL免疫时滞的HTLV-1病毒动力学行为. 方法:定义依赖于时滞的基本再生数R0,建立一个李雅普诺夫函数研究未感染平衡点稳定性,利用特征方程根是否穿越虚轴判断感染平衡点的稳定性. 结论:当R0<1时,未感染平衡点是全局稳定的;当R0>1时,非感染平衡点存在,存在以下两类情形:(a) 仅考虑细胞内时滞,非感染平衡点在一定条件下是局部渐近稳定的;(b) 仅考虑免疫时滞,系统会产生Hopf分岔.结论:数值模拟验证模型结论有效,可为HTLV-1药物研发提供依据.
[1] | FARMANBAR A, FIROUZI S, MAKA?OWSKI W, et al. Inferring clonal structure in HTLV-1-infected individuals: towards bridging the gap between analysis and visualization[J]. Human genomics, 2017, 11(1): 15. |
[2] | WILLEMS L, HASEGAWA H, ACCOLLA R, et al.Reducing the global burden of HTLV-1 infection: An agenda for research and action[J]. Antiviral Research, 2016, 137:41-48. |
[3] | RUAN S, WEI J.On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion[J]. Mathematical Medicine and Biology, 2001, 18(1): 41-52. |
[4] | BANGHAM C R M. HTLV-1 infections[J]. Journal of clinical pathology, 2000, 53(8): 581-586. |
[5] | SUN X, WEI J.Dynamics of an infection model with two delays[J]. International Journal of Biomathematics, 2015, 8(05): 1550068. |
[6] | SHAMSARA E, AFSHARNEZHAD Z, JAVIDMANESH E.Graphical Hopf Bifurcation of a Filippov HTLV-1 Model With Delay in Cytotoxic T Cells Response[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(9): 091007. |
[7] | LIM A G, MAINI P K.HTLV-I infection: a dynamic struggle between viral persistence and host immunity[J]. Journal of theoretical biology, 2014, 352: 92-108. |
[8] | VARGAS-DE-LEóN C. The complete classification for global dynamics of a model for the persistence of HTLV-I infection[J]. Applied Mathematics and Computation, 2014, 237: 489-493. |
[9] | WODARZ D, NOWAK M A, BANGHAM C R M. The dynamics of HTLV-I and the CTL response[J]. Immunology today, 1999, 20(5): 220-227. |
[10] | LI F, MA W.Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response[J]. Mathematical Methods in the Applied Sciences, 2018, 41(8): 3000-3017. |
[11] | KATTAN T, MACNAMARA A, ROWAN A G, et al.The avidity and lytic efficiency of the CTL response to HTLV-1[J]. The Journal of Immunology, 2009, 182(9): 5723-5729. |
[12] | WANG Y, LIU J, HEFFERNAN J M.Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay[J]. Journal of Mathematical Analysis and Applications, 2018, 459(1): 506-527. |
[13] | MUROYA Y, ENATSU Y, LI H.Global stability of a delayed HTLV-I infection model with a class of nonlinear incidence rates and CTLs immune response[J]. Applied Mathematics and Computation, 2013, 219(21): 10559-10573. |
[14] | HALE J K, LUNEL S M V. Introduction to functional differential equations[M]. New York:Springer Science & Business Media, 2013:135. |