|
- 2017
一种改进的细胞神经网络图像边缘提取方法
|
Abstract:
摘要 目的: 为了进一步提高细胞神经网络的处理速度,减少计算的迭代次数.方法: 首先对细胞神经网络模型的输出函数进行改进,并对模板的取值范围进一步确定.其次,用反应扩散方程来改进阈值,并融入了图像梯度信息和构造的调整函数,使其可以自动根据图像的梯度生成一个扩散矩阵,自适应地为每一个像素点选取不同的阈值.结果: 图像处理的运行时间和迭代次数都减少了一半,图像边缘提取的结果更加精确.结论: 用此方法选取2种不同类型的图像进行MATLAB仿真,与几种常用的边缘提取算法处理结果相比,在视觉效果上取得了很大提升,并提高了边缘提取的效率和准确性.
[1] | ZHANG H Y, QIAN F, GUO H T. Two value and gray image edge extraction based on cellular neural network[J]. Journal of Image and Graphics, 2001,10:32-33. |
[2] | JAIN A, GHOSH A, SINGH N B, et al. A nanoelectronic neuron cell for image processing application based on cellular neural/non-linear network architecture[J]. Journal of Nanoelectronics & Optoelectronics, 2016, 11(3):356-362. |
[3] | 李国东, 王 雪, 赵国敏. 基于五阶CNN的图像边提取算法研究[J]. 安徽大学学报(自然科学版), 2015, 39(3): 15-21. |
[4] | LI G D, WANG X, ZHAO G M. Research on image edge detection algorithm based on five order CNN[J].Journal of Anhui University (Natural Science Edition), 2015, 39(3): 15-21. |
[5] | 张 捷, 田 袁, 邓绍江. SA-PSO算法在CNN边缘提取模板设计中的应用[J]. 重庆大学学报, 2016, 39(4): 147-153. |
[6] | 仝瑞阳, 刘刚森. 基于混沌粒子群优化算法的CNN图像边缘提取方法[J]. 河南大学学报(自然科学版), 2012, 42(3): 309-314. |
[7] | LONG P H. Real-time image processing by cellular neural network using reaction-diffusion model[C]. 2009 International Conference on Knowledge and Systems Engineering, 2009: 93-99. |
[8] | 李婷姣. 基于CNN奶牛数字图像边缘提取的研究与应用[D]. 保定:河北农业大学, 2011: 30-39. |
[9] | LI T J. Research and application of digital image edge extraction based on CNN[D].Baoding: Agricultural University of Hebei, 2011: 30-39. |
[10] | WANG C. An image segmentation algorithm based on cellular neural network[D]. Chongqing: Chongqing University, 2008:23-35. |
[11] | WANG W. Edge detection of infrared image with CNN_DGA algorithm[J]. Optik, 2014, 125(1): 464-467. |
[12] | NOMURA A. Edge detection with reaction-diffusion equations having a local average threshold[J]. Pattern recognition and image analysis, 2008, 18(2): 289-299. |
[13] | NIU L. Image processing based on nonlinear dynamic systems[D]. Harbin: Northeast Forestry University, 2015:18-31. |
[14] | MARTÍNEZ J J, GARRIGÓS J, TOLEDO J, et al. An efficient and expandable hardware implementation of multilayer cellular neural networks[J]. Neurocomputing, 2013,114: 54-62. |
[15] | CHEN W, TIAN Q, LIU J, et al. Nonlocal low-rank matrix completion for image interpolation using edge detection and neural network[J]. Signal, Image and Video Processing, 2014,8(4): 657-663. |
[16] | YAO L, LIU J, XIE Y, et al. Medical image segmentation based on cellular neural network[J]. Medical image segmentation based on cellular neural network, 2001, 44(1):68-72. |
[17] | GUO M, FENG D. Improved method for image segmentation based on cellular neural network[J]. Springer London, 2012, 138:671-678. |
[18] | JAMROZIK W. Cellular neural networks for welding arc thermograms segmentation[J]. Infrared Physics and Technology, 2014, 9(66):18-28. |
[19] | DENG S, TIAN Y, HU X, et al. Application of new advanced CNN structure with adaptive thresholds to color edge detection[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(14):1637-1648, 2012. |
[20] | LI J Y, Z P. Multi-source image fusion algorithm based on cellular neural networks with genetic algorithm[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(24): 5230-5236. |
[21] | 王 灿. 基于细胞神经网络的图像分割算法研究[D]. 重庆:重庆大学, 2008: 23-35. |
[22] | KITTLER J. On the accuracy of the Sobel edge detector[J]. Image and Vision Computing, 1983, 1(1): 37-42. |
[23] | ZHANG J, TIAN Y, DENG S J. Application of SA-PSO algorithm in the design of CNN edge extraction template[J]. Journal of Chongqing University, 2016, 39(4): 147-153.) |
[24] | TONG R Y, LIU G S. CNN image edge extraction method based on chaos particle swarm optimization algorithm[J]. Journal of Henan University (Natural Science Edition), 2012, 42(3): 309-314. |
[25] | LI H, LIAO X, LI C, et al. Edge detection of noisy images based on cellular neural networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2011,6(9):746-3759. |
[26] | SHAH J. Reaction-diffusion equations and learning[J]. Journal of Visual Communication and Image Representation, 2002, 51(1): 82-93. |
[27] | 牛 蕾. 基于非线性动力系统的图像处理[D]. 哈尔滨: 东北林业大学, 2015: 18-31. |