|
- 2018
基于SiGe BiCMOS工艺的高速光接收机模拟前端电路
|
Abstract:
基于IBM 0.18 ?m SiGe BiCMOS工艺, 设计了一款12.5 Gb/s的全差分光接收机模拟前端电路.该电路由跨阻放大器、限幅放大器、直流偏移消除电路和输出缓冲级组成.为获得更高的带宽, 本文对Cherry-Hooper结构进行了改进, 设计出一种三级级联的限幅放大器, 而直流偏移消除电路则使用了差分有源密勒电容(DAMC)来替代传统的片外大电容, 提高了电路集成度和稳定性.版图后仿结果表明, 在探测器等效电容为300 fF的情况下, 光接收机前端电路的跨阻增益为97 dB, -3 dB带宽为11.7 GHz, 等效输入噪声电流小于14.2 pA/, 芯片核心面积为720 ?m×700 ?m.
A fully differential analog front-end circuit for 12.5 Gb/s optical receiver was optimally designed with IBM 0.18 ?m SiGe BiCMOS technology,which included transimpedance amplifier(TIA),limiting amplifier(LA),DC offset cancellation(DOC)circuit and output buffer. To obtain wider bandwidth,the Cherry-Hooper structure was modified,and a cascaded limiting amplifier with three-stage Cherry-Hooper structures was proposed. Additionally,the DOC circuit adopted a differential active Miller capacitor(DAMC)to replace the traditional large off-chip capacitors,which was beneficial for improving the integration level and stability. Post-layout simulation results showed that the optical receiver front-end circuit had a -3 dB bandwidth of 11.7 GHz with a transimpedance gain of 97 dB while using a photodiode equivalent capacitance of 300 fF. The equivalent input noise current was less than 14.2 pA/ within the interesting band,and the size of core chip was 720 ?m×700 ?m
[1] | Moeneclaey B, Verbrugghe J, Blache F, et al. A 40 Gb/s transimpedance amplifier for optical links[J]. <i>IEEE Photonics Technology Letters</i>, 2015, 27(13):1375-1378. |
[2] | Brandl P, Zimmermann H. 3 Gbit/s optical receiver IC with high sensitivity and large integrated pin photodiode [J]. <i>Electronics Letters</i>, 2013, 49(8):552-554. |
[3] | Eissa M H, Awny A, Winzer G, et al. A wideband monolithically integrated photonic receiver in 0.25 ?m SiGe:C BiCMOS technology[C]// <i>European Solid-State Circuits Conference</i>. Lausanne, Switzerland, 2016:487-490. |
[4] | Xie Sheng, Tao Xizi, Mao Luhong, et al. A high-Gm differential regulated cascode transimpedance amplifier [J]. <i>Transactions of Tianjin University</i>, 2016, 22(4):345-351. |
[5] | Kang Y Z, Mao L H, Zhang S L, et al. A 13 GHz 38 mW differential front-end amplifier based on 0.18 μm SiGe BiCMOS for 15 Gb/s optical receiver [C] // <i>IEEE International Conference on Solid-State and Integrated Circuit Technology</i>. Xi’an, China, 2012:1-3. |
[6] | Chen L, Li Z, Wang Z. A 10-Gb/s Inductorless CMOS limiting amplifier for optic-fiber transmission system [C]// <i>IEEE Photonics and Optoelectronic</i>. Chengdu, China, 2010:1-4. |
[7] | Holdenried C D, Haslett J W, Lynch M W. Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical communications[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2004, 39(11):1959-1967. |
[8] | Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductor-less CMOS limiting amplifier with third-order interleaving active feedback[J]. <i>IEEE Journal of Solid-State Circuits</i>, 2007, 42(5):1111-1120. |
[9] | Youn J S, Lee M J, Park K Y, et al. A 12. 5-Gb/s SiGe BiCMOS optical receiver with a monolithically integrated 850-nm avalanche photodetector[C]// <i>Optical Fiber Communication Conference</i>. Los Angeles, California, USA, 2012:1-3. |
[10] | Toru Y, Toshiaki T, Norio C, et al. A 20 Gbps inductorless CMOS optical receiver for short distance VCSEL based 850 nm optical links[J]. <i>Analog Integrated Circuits and Signal Processing</i>, 2014, 78(1):43-51. |
[11] | Oh W S, Park K. A 12-Channel 60-Gb/s transimpedance amplifier and limiting amplifier array for OPCB applications[C]//<i>IEEE International Conference on Electronics</i>. Marrakech, Morocco, 2008:22-25. |
[12] | Xie Sheng, Guo Jing, Guan Kun, et al. Design and realization of InP/AlGaInAs multiple quantum well ring laser[J]. <i>Transactions of Tianjin University, </i>2014, 20(6):402-406. |
[13] | Huang J C, Lai K S, Hsu K Y J. A 10. 5 Gb/s transimpedance amplifier using capacitive emitter degeneration technique[J]. <i>Solid-State Electronics</i>, 2009, 53(8): |
[14] | 916-919. |