|
- 2017
藏红花通过抗凋亡、抗炎和抗水肿机制发挥对大鼠脊髓损伤模型的神经保护作用
|
Abstract:
摘要:目的 研究藏红花对大鼠脊髓损伤后神经功能的保护作用、相关病理变化及其作用机制。方法 36只大鼠随机均分为6组:正常组、损伤组及治疗组A、B、C、D。通过BBB评分法(the Basso Beattie Bresnahan locomotor rating scale)和HE染色评估藏红花的神经保护作用并确定最有效剂量。另取60只大鼠随机均分为3组:正常组、损伤组、治疗组,通过尼氏染色、TUNEL染色及电子显微镜观察评估组织病理学变化;RT-PCR、免疫组化检测凋亡相关蛋白Bax与Bcl-2的表达;ELISA、Western blot、免疫组化等检测炎症相关因子1L-1β、1L-10、TNF-α、P38MAPK的表达,Western blot、免疫组化检测水肿相关因子APQ-4的表达。结果 藏红花最有效剂量为100mg/kg。治疗组与损伤组相比,神经细胞结构更清晰,凋亡细胞数目显著降低(26.37±1.54 vs. 35.94±1.62,P=0.000),Bax表达明显降低(P=0.000)而Bcl-2表达有所提高(P=0.036),P38MAPK表达水平明显降低[(300.30±33.26)% vs. (132.54±10.21)%,P=0.000],APQ-4表达水平降低[(359.55±16.12)% vs. (124.53±20.35)%,P=0.000]。结论 藏红花通过抗凋亡、抗炎及抗水肿机制在大鼠脊髓损伤后起到神经保护的作用。
ABSTRACT: Objective To investigate the effect of safranal on neurologic functions and histopathologic changes after spinal cord injury (SCI) and the related molecular mechanisms. Methods We randomly assigned 36 rats into six groups: control group, injury group and four treatment groups (namely, A, B, C, and D). The Basso Beattie Bresnahan locomotor rating scale (BBB) and HE staining were applied to evaluate the neuroprotective effect and determine the most effective dosage. Another 60 rats were randomly and evenly assigned to three groups: control group, injury group and treatment group. Nissl staining, TUNEL staining and electron microscopy were used to analyze histopathological changes; RT-PCR, immunohistopathological staining, ELISA, and Western blot were used to detect the expressions of apoptosis-related proteins (Bax and Bcl-2), inflammation-related factors (IL-1β, IL-10, TNF-α and P38MAPK), and edema-related factor (APQ-4). Results The optimal dosage for safranal was 100mg/kg. Neurocyte structure was found more distinct in treatment group than in injury group. In addition, we detected a smaller number of apoptotic neurocyte (26.37±1.54 vs. 35.94±1.62, P=0.000), decreased Bax (P=0.000) and APQ-4[(359.55±16.12)% vs. (124.53±20.35)%, P=0.000] expressions, increased Bcl-2 (P=0.036) expression, and obviously lowered P38MAPK [(300.30±33.26)% vs. (132.54±10.21)%, P=0.000] expression. Conclusion Safranal exerts its neuroprotective function through anti-apoptosis, anti-inflammation and anti-edema in the rat model of spinal cord injury
[1] | NAKAJIMA Y, OSUKA K, SEKI Y, et al. Taurine reduces inflammatory responses after spinal cord injury[J]. J Neurotrauma, 2010, 27(2):403-410. |
[2] | MORTAZAVI MM, VERMA K, HARMON OA, et al. The microanatomy of spinal cord injury: a review[J]. Clin Anat, 2015, 28(1):27-36. |
[3] | CHEN HC, FONG TH, HSU PW. Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection[J]. J Surg Res, 2013, 179(1):e203-210. |
[4] | SEO JY, KIM YH, KIM JW, et al. Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats[J]. Spine (Phila Pa 1976), 2015, 40(12):883-890. |
[5] | LIU C, SHI Z, FAN L, et al. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury[J]. Brain Res, 2011, 1374(16):100-109 |
[6] | RIOS JL, RECIO MC, GINER RM. An update review of saffron and its active constituents[J]. Phytother Res, 1996, 10:189-193. |
[7] | XU GL, LI G, MA HP, et al. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells[J]. J Agric Food Chem, 2009, 57(18): 8325-8330. |
[8] | ALLEN AR. Surgery of experimental lesions of spinal cord equivalent to crush injury of fracture dislocation[J]. JAMA, 1911, 57:878-880. |
[9] | BASSO DM, BEATTIE MS, BRESNAHAN JC, et al. MASCIS evaluation of open field locomotor scores:effects of experience and teamwork on reliability multicenter animal spinal cord injury study[J]. J Neurotrauma, 1996, 13(7): 343-359. |
[10] | BEN-IZHAK O, LASTER Z, AKRISH S, et al. TUNEL as a tumor marker of tongue cancer[J]. Anticancer Res, 2008, 28(5B):2981-2986. |
[11] | TOMES DJ, AGRAWAL SK. Role of Na (+)-Ca(2+) exchanger after traumatic or hypoxic/ischemic injury to spinal cord white matter[J]. Spine J, 2002, 2(1):35-40. |
[12] | GENOVESE T, MAZZON E, ESPOSITO E, et al. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury[J]. Free Radic Res,2009, 43(7):631-645. |
[13] | ASLAN A, CEMEK M, BUYUKOKUROGLU ME, et al. Dantrolene can reduce secondary damage after spinal cord injury[J]. Eur Spine J, 2009, 18(10): 1442-1451. |
[14] | HAMANN K, SHI R. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury[J]. J Neurochem, 2009, 111(6):1348-1356. |
[15] | G?Bl P, KRAVCUKOV?B P, MOKRY M, et al. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review[J]. Cell Mol Neurobiol, 2009, 29(6-7):1025-1035. |
[16] | 孙海燕,陈宜维,桂斌捷,等. 川芎嗪对大鼠脊髓损伤后bcl-2、bax基因表达的影响[J]. 颈腰痛杂志, 2005, 26(6):425-428. |
[17] | 王钢,刘世清. 丹参与神经生长因子对脊髓损伤保护作用的实验研究[J]. 中国中医骨伤科杂志, 2004, 12(4):5-7. |
[18] | 任宪盛,冷向阳,杨有庚,等. 黄芪对大鼠实验性脊髓损伤的神经保护作用[J]. 中国临床康复, 2006, 10(7):31-33. |
[19] | LI C, YAN Z, YANG J, et al. Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats[J]. Neurochem Int, 2010, 56(3):495-500. |
[20] | KAPLAN S, BISLERI G, MORGAN JA, et al. Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion-induced spinal cord injury[J]. Ann Thorac Surg, 2005, 80(6):2242-2249. |
[21] | PUTT FA. A rapid Nissl stain for formalin-fixed paraffin-embedded tissue[J]. J Neurosurg ,1948, 5(2):211. |
[22] | SADER AA, BARBIERI-NELO J, SADER SL, et al. The protective action of chlorpromazine on the spinal cord of rabbits submitted to ischemia and reperfusion is dose-dependent [J]. J Cardiovasc Surg (Torino), 2002, 43: 827-831. |
[23] | SEKI T, HIDA K, TADAM, et al. Role of the bcl-2 gene after contusive spinal cord injury in mice [J]. Neurosurgery, 2003, 53(1):192-198. |
[24] | RAY SK, MATZELLE DD, WILFORD GG, et al. Cell death in spinal cord injury (SCI) requires denovo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra[J]. Ann N Y Acad Sci, 2001, 939:436-449. |
[25] | KWONG KYCK, JONES CA, CAYABYAB R, et al. IL-10, an inflammatory/inhibitory cytokin, but not always[J]. J Clin Immunol Immunopathol, 1998, 88(1):105-113. |
[26] | 雷德强,赵洪洋,张方成,等. IL-10对脊髓损伤后NF-κB表达影响的研究[J]. 神经疾病与精神卫生, 2008, 8(1):24-26. |
[27] | BETHEA JR, DIETRICH WD. Targeting the host inflammatory response in traumatic spinal cord injury[J]. J Curr Opin Neurol, 2002, 15(3):355-360. |
[28] | WANG P, CAO X, NAGEL DJ. Activation of ASK1 during reperfusion of ischemic spinal cord[J]. Neurosci Lett, 2007, 415(3):248-252. |
[29] | SCHAUER RJ, GERBES AL, VONIER D, et al. Induction of cellular resistance against kuffer cell derived oxidant stresss: a novel concept of hepato protection by ischemic preconditioning[J]. Hepatology, 2003, 37(2):286-295. |
[30] | BARONE FC, IRVING EA, RAY AM, et al. Inhibition of p38 MAPK mitogen activated protein kinase provides neuroprotection in cerebral focal ischemia[J]. Med Res Rev, 2001, 21(2):129-145. |
[31] | WITIW CD, FEHLINGS MG. Acute spinal cord injury[J]. J Spinal Disord Tech, 2015, 28(6):202-210. |
[32] | KIM KT, KIM HJ, CHO DC, et al. Substance P stimulates proliferation of spinal neural stem cells in spinal cord injury via the mitogen-activated protein kinase signaling pathway[J]. Spine J, 2015, 15(9):2055-2065. |
[33] | BECK KD, NGUYEN HX, GALVAN MD, et al. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment[J]. Brain, 2010, 133(Pt 2):433-447. |
[34] | FAN LH, WANG KZ, CHENG B, et al. Anti-apoptotic and neuroprotective effects of tetramethylpyrazine following spinal cord ischemia in rabbits[J]. BMC Neuroscience, 2006, 14(7):48-56. |
[35] | KHANNA S, PARK HA, SEN CK, et al. Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid[J]. Antioxid Redox Signal, 2009, 11(3):449-468. |
[36] | SONG Y, XUE H, LIU TT, et al. Rapamycin plays a neuroprotective effect after spinal cord injury via anti-inflammatory effects[J]. J Biochem Mol Toxicol, 2015, 29(1):29-34. |
[37] | CHEN M, NI Y, LIU Y, et al. Spatiotemporal expression of EAPP modulates neuronal apoptosis and reactive astrogliosis after spinal cord injury[J]. J Cell Biochem, 2015, 116(7):1381-1390. |
[38] | SAMANTARAY S, SRIBNICK EA, DAS A, et al. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats[J]. J Pineal Res, 2008, 44(4):348-357. |
[39] | PITSIKAS N, BOULTADAKIS A, GEORGIADOU G, et al. Effects of the active constituents of crocus sativus L, crocins, in an animal model of anxiety[J]. Phytomedicine, 2008, 15(12):1135-1139. |
[40] | HOSSEINZADEH H, YOUNESI HM. Antinociceptive and anti-inflammatory effects of crocus sativus L. stigma and petal extracts in mice[J]. BMC Pharmacol, 2002,2:1-8. |
[41] | SOEDA S, OCHIAI T, PAOPONG L, et al. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells[J]. Life Sci, 2001, 69(24):2887-2898. |
[42] | OCHIAI T, SOEDA S, OHNO S, et al. Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis[J]. Neurochem Int, 2004, 44(5):321-330. |
[43] | SHEN XC, QIAN ZY, CHEN Q. Protective effect of crocetin on primary culture of cardiac myocyte treated with noradrenaline in vitro[J]. Yao Xue Xue Bao, 2004,39(10):787-791. |
[44] | OSHIO K, BINDER DK, YANG B. Expression of aquaporin water channels in mouse spinal cord[J]. Neuroscience, 2004, 127(3):685-693. |