|
- 2018
利用动态功能连接对健康危险性行为特征的预测
|
Abstract:
为了研究健康危险性行为的脑网络特征,该文采集了49个被试的静息态功能磁共振数据。使用每一个对象动态功能连接网络的低频振荡振幅作为特征,利用支持向量回归对个体的健康危险行为进行预测。结果表明动态功能连接能较好地预测健康危险性行为特征,并提取了与之相关的功能连接模式,对预测有重要作用的连接绝大部分位于网络之间,且主要呈现为带状盖网络和额顶网络之间的连接,以及感觉运动网络与它们之间的连接相关。
[1] | SHEN H, LI Z, QIN J, et al. Changes in functional connectivity dynamics associated with vigilance network in taxi drivers[J]. Neuroimage, 2016, 124:367-378. |
[2] | FINN E S, SHEN X, SCHEINOST D, et al. Functional connectome fingerprinting:identifying individuals using patterns of brain connectivity[J]. Nat Neurosci, 2015, 18(11):1664-1671. |
[3] | JIANG W, SHI F, LIAO J, et al. Disrupted functional connectome in antisocial personality disorder[J]. Brain Imaging Behav, 2016, doi:10.1007/s11682-016-9572-z. |
[4] | QIN J, CHEN S G, HU D, et al. Predicting individual brain maturity using dynamic functional connectivity[J]. Front Hum Neurosci, 2015, 9:418. |
[5] | FAIR D A, DOSENBACH N U, CHURCH J A, et al. Development of distinct control networks through segregation and integration[J]. Proc Natl Acad Sci USA, 2007, 104(33):13507-13512. |
[6] | SYLVESTER C M, CORBETTA M, RAICHLE M E, et al. Functional network dysfunction in anxiety and anxiety disorders[J]. Trends Neurosci, 2012, 35(9):527-535. |
[7] | BUCKNER R L, ANDREWS-HANNA J R, SCHACTER D L. The brain's default network:anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124:1-38. |
[8] | 季成叶. 青少年健康危险行为[J]. 中国学校卫生, 2007, 28(4):289-291. JI Chen-ye. The health-risk behavior of adolescents[J].Chinese Journal of School Health, 2007, 28(4):289-291. |
[9] | WANG M, YI J, CAI L, et al. Development and psychometric properties of the health-risk behavior inventory for Chinese adolescents[J]. BMC Med Res Methodol, 2012, 12:94. |
[10] | WELTE J W, WIECZOREK W F, BARNES G M, et al. The relationship of ecological and geographic factors to gambling behavior and pathology[J]. J Gambl Stud, 2004, 20(4):405-423. |
[11] | JESSOR R. Risk behavior in adolescence:a psychosocial framework for understanding and action[J]. Developmental Review, 1992, 12(4):374-390. |
[12] | HUTCHISON R M, WOMELSDORF T, GATI J S, et al. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques[J]. Hum Brain Mapp, 2013, 34(9):2154-2177. |
[13] | ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3):663-676. |
[14] | HUTCHISON R M, MORTON J B. Tracking the brain's functional coupling dynamics over development[J]. J Neurosci, 2015, 35(17):6849-6859. |
[15] | SHEN H, WANG L, LIU Y, et al. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI[J]. NeuroImage, 2010, 49:3110-3121. |
[16] | DOSENBACH N U, NARDOS B, COHEN A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997):1358-1361. |
[17] | YU R, CHIEN Y L, WANG H L, et al. Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia[J]. Hum Brain Mapp, 2014, 35(2):627-637. |
[18] | LEONARDI N, VAN DE VILLE D. On spurious and real fluctuations of dynamic functional connectivity during rest[J]. Neuroimage, 2015, 104:430-436. |