全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用动态功能连接对健康危险性行为特征的预测
Prediction of the Health-Risk Behavior by Using Dynamic Functional Connectivity

DOI: 10.3969/j.issn.1001-0548.2018.06.020

Keywords: 脑网络,动态功能连接,功能磁共振,健康危险性行为,支持向量回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究健康危险性行为的脑网络特征,该文采集了49个被试的静息态功能磁共振数据。使用每一个对象动态功能连接网络的低频振荡振幅作为特征,利用支持向量回归对个体的健康危险行为进行预测。结果表明动态功能连接能较好地预测健康危险性行为特征,并提取了与之相关的功能连接模式,对预测有重要作用的连接绝大部分位于网络之间,且主要呈现为带状盖网络和额顶网络之间的连接,以及感觉运动网络与它们之间的连接相关。

References

[1]  SHEN H, LI Z, QIN J, et al. Changes in functional connectivity dynamics associated with vigilance network in taxi drivers[J]. Neuroimage, 2016, 124:367-378.
[2]  FINN E S, SHEN X, SCHEINOST D, et al. Functional connectome fingerprinting:identifying individuals using patterns of brain connectivity[J]. Nat Neurosci, 2015, 18(11):1664-1671.
[3]  JIANG W, SHI F, LIAO J, et al. Disrupted functional connectome in antisocial personality disorder[J]. Brain Imaging Behav, 2016, doi:10.1007/s11682-016-9572-z.
[4]  QIN J, CHEN S G, HU D, et al. Predicting individual brain maturity using dynamic functional connectivity[J]. Front Hum Neurosci, 2015, 9:418.
[5]  FAIR D A, DOSENBACH N U, CHURCH J A, et al. Development of distinct control networks through segregation and integration[J]. Proc Natl Acad Sci USA, 2007, 104(33):13507-13512.
[6]  SYLVESTER C M, CORBETTA M, RAICHLE M E, et al. Functional network dysfunction in anxiety and anxiety disorders[J]. Trends Neurosci, 2012, 35(9):527-535.
[7]  BUCKNER R L, ANDREWS-HANNA J R, SCHACTER D L. The brain's default network:anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124:1-38.
[8]  季成叶. 青少年健康危险行为[J]. 中国学校卫生, 2007, 28(4):289-291. JI Chen-ye. The health-risk behavior of adolescents[J].Chinese Journal of School Health, 2007, 28(4):289-291.
[9]  WANG M, YI J, CAI L, et al. Development and psychometric properties of the health-risk behavior inventory for Chinese adolescents[J]. BMC Med Res Methodol, 2012, 12:94.
[10]  WELTE J W, WIECZOREK W F, BARNES G M, et al. The relationship of ecological and geographic factors to gambling behavior and pathology[J]. J Gambl Stud, 2004, 20(4):405-423.
[11]  JESSOR R. Risk behavior in adolescence:a psychosocial framework for understanding and action[J]. Developmental Review, 1992, 12(4):374-390.
[12]  HUTCHISON R M, WOMELSDORF T, GATI J S, et al. Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques[J]. Hum Brain Mapp, 2013, 34(9):2154-2177.
[13]  ALLEN E A, DAMARAJU E, PLIS S M, et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cereb Cortex, 2014, 24(3):663-676.
[14]  HUTCHISON R M, MORTON J B. Tracking the brain's functional coupling dynamics over development[J]. J Neurosci, 2015, 35(17):6849-6859.
[15]  SHEN H, WANG L, LIU Y, et al. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI[J]. NeuroImage, 2010, 49:3110-3121.
[16]  DOSENBACH N U, NARDOS B, COHEN A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997):1358-1361.
[17]  YU R, CHIEN Y L, WANG H L, et al. Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia[J]. Hum Brain Mapp, 2014, 35(2):627-637.
[18]  LEONARDI N, VAN DE VILLE D. On spurious and real fluctuations of dynamic functional connectivity during rest[J]. Neuroimage, 2015, 104:430-436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133