全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于小波变换与SVM的ADHD病人分类
Classification Based Wavelet Translate and SVM in the ADHD

DOI: 10.3969/j.issn.1001-0548.2015.05.025

Keywords: 注意缺陷与多动,支持向量机,机器学习,小波变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出基于小波变换的特征提取方法对ADHD病人进行分类研究。采用115名ADHD-200的竞赛静息态功能磁共振数据,首先提取了90个脑区的平均时间序列信号,然后利用小波变换多分辨率分析特性对信号进行3层分解;计算了各个尺度下小波系数的能量值,对能量值进行归一化处理后,将其作为分类特征向量;最后结合SVM分类器采用留一交叉验证法对ADHD病人进行分类。结果表明该方法有助于ADHD病人的分类与诊断。

References

[1]  孙延奎. 小波分析及其应用[M]. 北京: 机械工业出版社, 2005. SUN Yan-kui. Wavelet analysis and its application[M]. Beijing: China Machine Press, 2005.
[2]  成谢锋, 杨贺. 5种小波在心音信号处理中的分析与比较[J]. 南京邮电大学学报, 2015, 35(2): 39-46. CHENG Xie-feng, YANG He. Analysis and comparison of five kinds of wavelet in processing heart sound signal[J]. Journal of Nanjing University of Posts and Telecommunications, 2015, 35(2): 39-46.
[3]  JIAG Y E,LIN Y P. Error Estimation of INS ground alignment through observability analysis[J]. IEEE Transactions on Aerospace and Electronic Sstems, 1992, 28(1): 92-97.
[4]  肖汉光, 蔡从中. 特征向量的归一化比较性研究[J]. 计 算机工程与应用, 2009, 45(22): 117-119. XIAO Han-guang, CAI Cong-zhong. Comparison study of normalization of feature vector[J]. Computer Engineering and Applications, 2009, 45(22): 117-119.
[5]  张丽琼, 王炳和. 基于小波变换的脉象信号特征提取方 法[J]. 数据采集与处理, 2004, 19(3): 322-325. ZHANG Li-qiong, WANG Bin-he. Feature extraction methods for pulse signal based on wavelet transform[J]. Journal of Data Acquisition & Processing, 2004,19(3): 322-325.
[6]  SOLANTO M V, MARKS D J, WASSERSTEIN J, et al. Efficacy of meta-cognitive therapy for adult ADHD[J]. The American Journal of Psychiatry, 2010, 167(8): 958-968.
[7]  POLANCZK G, DE LIMA M S, HORTA B L, et al. The worldwide prevalence of ADHD: a systematic review and metaregression analysis[J]. Am J Psychiatry, 2007, 164(6): 942-948.
[8]  SELLERS R, MAUGHAN B, PICKLES A, et al. Trends in parent and teacher rated emotional, conduct and ADHD problems and their impact in prepubertal children in Great Britain: 1999-2008[J]. Journal of Child Psychology and Psychiatry, 2015, 56(1): 49-57.
[9]  刘风. 基于磁共振成像的多变量模式分析方法学研究[D]. 成都: 电子科技大学, 2014. LIU Feng. MRI-based multivariate pattern analysis methodologies and applications[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[10]  AMIN H U, MALIK A S, AHMAD R F, et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques[J]. Australasian Physical & Engineering Sciences in Medicine, 2015, 38(1): 139-149.
[11]  张晓文, 杨熠普, 许晓鸣. 基于小波变换的特征构造与选 择[J]. 计算机工程与应用, 2003, 19(19): 25-28. ZHANG Xiao-wen, YANG Yu-pu, XU Xiao-ming. Wavelet based feature representation[J]. Computer Engineering and Applications, 2003, 19(19): 25-28.
[12]  MITCHELL T M. Learning to decode cognitive states from brain images[J]. Machine Learning, 2004, 57(1-2): 145-175.
[13]  WEI Liao. Altered functional connectivity and small-world in mesial temporal lobe epilepsy[J]. PLoS One, 2010, 5(1): e8525.
[14]  ANURADHA J, RAMACHANDRAN V, ARULALAN K V, et al. Diagnosis of ADHD using SVM algorithm[C]// Proceedings of the Third Annual ACM Bangalore Conference. [S.l.]: ACM, 2010.
[15]  GUO X, AN X, KUANG D, et al. ADHD-200 Classification based on social network Method[C]//Intelligent Computing in Bioinformatics. Taiyuan, China: Springer International Publishing, 2014: 233-240.
[16]  李长斌. 基于脑活动网络特征的ADHD分类研究[D]. 北 京: 北京交通大学, 2014. LI Chang-bin. Research on classification of ADHD based on the characteristic in brain activity-network[D]. Beijing: Beijing Jiaotong University, 2014.
[17]  TIAN L, WANG J. Hemisphere and gender-related differences in small-world brain networks: a resting-state functional MRI study[J]. NeuroImage, 2011, 54(1): 191-202.
[18]  VAIDYA C J, BUNGE S A, DUDUKOVIC N M, et al. Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging[J]. Am J Psychiatry, 2005, 162(9): 1605-1613.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133