|
- 2018
基于增强学习的下肢助力外骨骼虚阻抗控制
|
Abstract:
提出了一种基于增强学习的变虚阻抗控制算法,其控制器设计为一个结合人机交互模型的虚阻抗控制器。为了适应不同穿戴者所产生的交互力,采用了PI2增强学习算法对控制器中的参数进行在线学习。该控制策略在一自由度外骨骼平台和HUALEX下肢助力外骨骼上进行了实验验证,证明了所提出控制算法的有效性。
[1] | ESQUENAZI A, TALATY M, PACKEL A, et al. The rewalk powered exoskeleton to restore ambulatory function to individuals with theracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11):911-921. |
[2] | RACINE J L. Control of a lower extremity exoskeleton for human performance amplification[D]. California, USA: University of California, Berkeley, 2003. |
[3] | GHAN J, KAZEROONI H. System identification for the berkeley lower extremity exoskeleton (BLEEX)[C]//International Conference of Robotics and Automation (ICRA). Florida, USA:[s.n.], 2006:3477-3484. |
[4] | BUCHLI J, STULP F, THEODOROU E A, et al. Learning variable impedance control[J]. International Journal of Robotics Research, 2011, 30(7):820-833. |
[5] | KAZEROONI H, CHU A, STEGER R. That which does not stabilize, will only make us stronger[J]. International Journal of Robotics Research, 2007, 26(1):5-89. |
[6] | SANKAI Y. HAL:Hybrid assistive limb based on cybernics[J]. Robotics Research, 2010:25-34. |
[7] | STAUSSE K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). California, USA:IEEE, 2011:4911-4916. |
[8] | WALSH C J, PASCH K, HERR H. An autonomous, under-actuated exoskeleton for load-carrying augmentation[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2006:1410-1415. |
[9] | KAZEROONI H, RACINE J L, HUANG L, et al. On the control of the berkeley lower extremity exoskeleton (BLEEX)[C]//International Conference of Robotics and Automation (ICRA). Barcelona, Spain:[s.n.], 2005:4353-4360. |
[10] | GHAN J, STEGER R, KAZEROONI H. Control and system identification for the berkeley lower extremity exoskeleton[J]. Advanced Robotics, 2006, 20(9):989-1014. |
[11] | THEODOROU E A, BUCHILI J, SCHAAL S. A generalized path integral control aproach to reinforcement learning[J]. Journal of Machine Learning Research, 2010,11:3137-3181. |
[12] | WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, under-actuated exoskeleton for load- carrying augmentation[C]//IEEE International Conference on Robotics and Automation (ICRA). Florida, USA:IEEE, 2006:3485-3491. |
[13] | HUANG R, CHENG H, CHEN Q, et al. Interative learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015:6409-6415. |
[14] | ZOSS A, KAZEROONI H, CHU A. On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX)[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada:IEEE, 2005:3132-3139. |
[15] | TRAN H T, CHENG H, LIN X, et al. The relationship between physical human-exoskeleton interaction and dynamic factors:using a learning approach for control applications[J]. Science China Information Science, 2014, 57(12):1-13. |
[16] | KAZEROONI H, STEGER R, HUANG L, et al. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. International Journal of Robotics Research, 2006, 25(6):561-573. |
[17] | KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence and muscle force condition for HAL[J]. Advance Robotics, 2005, 19(7):717-734. |
[18] | LEE S, SANKAI Y. Power Assist control for walking aid with hal-3 based on EMG and impedance adjustment around knee joint[C]//International Conference on Intelligent Robots and Systems (IROS). Lausanne, Switzerland:[s.n.], 2002:1499-1504. |
[19] | HAYASHI T, KAWAMOTO H, SANKAI Y. Control method of robot suit HAL working as operator's muscle using biologic and dynamical information[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada:IEEE, 2005:3063-3068. |
[20] | GABRIEL A O, COLGATE J E, PESHKIN M A, et al. Active-impedance control of a lower-limb assistive exoskeleton[C]//IEEE International Conference on Rehabilitation Robotics. Noordwijk, Netherlands:IEEE, 2007:188-195. |
[21] | TRAN H T, CHENG H, DUONG M K, et al. Fuuzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//IEEE International Conference on Robotics and Biomimetics. Bali, Indonesia:IEEE, 2014:986-992. |