全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于增强学习的下肢助力外骨骼虚阻抗控制
Learning Virtual Impedance for Control of a Human-Coupled Lower Exoskeleton

DOI: 10.3969/j.issn.1001-0548.2018.03.001

Keywords: 人机交互,下肢助力外骨骼,增强学习,虚阻抗控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于增强学习的变虚阻抗控制算法,其控制器设计为一个结合人机交互模型的虚阻抗控制器。为了适应不同穿戴者所产生的交互力,采用了PI2增强学习算法对控制器中的参数进行在线学习。该控制策略在一自由度外骨骼平台和HUALEX下肢助力外骨骼上进行了实验验证,证明了所提出控制算法的有效性。

References

[1]  ESQUENAZI A, TALATY M, PACKEL A, et al. The rewalk powered exoskeleton to restore ambulatory function to individuals with theracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11):911-921.
[2]  RACINE J L. Control of a lower extremity exoskeleton for human performance amplification[D]. California, USA: University of California, Berkeley, 2003.
[3]  GHAN J, KAZEROONI H. System identification for the berkeley lower extremity exoskeleton (BLEEX)[C]//International Conference of Robotics and Automation (ICRA). Florida, USA:[s.n.], 2006:3477-3484.
[4]  BUCHLI J, STULP F, THEODOROU E A, et al. Learning variable impedance control[J]. International Journal of Robotics Research, 2011, 30(7):820-833.
[5]  KAZEROONI H, CHU A, STEGER R. That which does not stabilize, will only make us stronger[J]. International Journal of Robotics Research, 2007, 26(1):5-89.
[6]  SANKAI Y. HAL:Hybrid assistive limb based on cybernics[J]. Robotics Research, 2010:25-34.
[7]  STAUSSE K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). California, USA:IEEE, 2011:4911-4916.
[8]  WALSH C J, PASCH K, HERR H. An autonomous, under-actuated exoskeleton for load-carrying augmentation[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2006:1410-1415.
[9]  KAZEROONI H, RACINE J L, HUANG L, et al. On the control of the berkeley lower extremity exoskeleton (BLEEX)[C]//International Conference of Robotics and Automation (ICRA). Barcelona, Spain:[s.n.], 2005:4353-4360.
[10]  GHAN J, STEGER R, KAZEROONI H. Control and system identification for the berkeley lower extremity exoskeleton[J]. Advanced Robotics, 2006, 20(9):989-1014.
[11]  THEODOROU E A, BUCHILI J, SCHAAL S. A generalized path integral control aproach to reinforcement learning[J]. Journal of Machine Learning Research, 2010,11:3137-3181.
[12]  WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, under-actuated exoskeleton for load- carrying augmentation[C]//IEEE International Conference on Robotics and Automation (ICRA). Florida, USA:IEEE, 2006:3485-3491.
[13]  HUANG R, CHENG H, CHEN Q, et al. Interative learning for sensitivity factors of a human-powered augmentation lower exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany:IEEE, 2015:6409-6415.
[14]  ZOSS A, KAZEROONI H, CHU A. On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX)[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada:IEEE, 2005:3132-3139.
[15]  TRAN H T, CHENG H, LIN X, et al. The relationship between physical human-exoskeleton interaction and dynamic factors:using a learning approach for control applications[J]. Science China Information Science, 2014, 57(12):1-13.
[16]  KAZEROONI H, STEGER R, HUANG L, et al. Hybrid control of the berkeley lower extremity exoskeleton (BLEEX)[J]. International Journal of Robotics Research, 2006, 25(6):561-573.
[17]  KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence and muscle force condition for HAL[J]. Advance Robotics, 2005, 19(7):717-734.
[18]  LEE S, SANKAI Y. Power Assist control for walking aid with hal-3 based on EMG and impedance adjustment around knee joint[C]//International Conference on Intelligent Robots and Systems (IROS). Lausanne, Switzerland:[s.n.], 2002:1499-1504.
[19]  HAYASHI T, KAWAMOTO H, SANKAI Y. Control method of robot suit HAL working as operator's muscle using biologic and dynamical information[C]//IEEE International Conference on Intelligent Robots and Systems (IROS). Edmonton, Canada:IEEE, 2005:3063-3068.
[20]  GABRIEL A O, COLGATE J E, PESHKIN M A, et al. Active-impedance control of a lower-limb assistive exoskeleton[C]//IEEE International Conference on Rehabilitation Robotics. Noordwijk, Netherlands:IEEE, 2007:188-195.
[21]  TRAN H T, CHENG H, DUONG M K, et al. Fuuzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//IEEE International Conference on Robotics and Biomimetics. Bali, Indonesia:IEEE, 2014:986-992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133