全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

直接脑控多机器人协作任务研究

DOI: doi:10.7507/1001-5515.201802022

Keywords: 脑控, 脑—机器人交互, 多机器人协作, 脑开关, 稳态视觉诱发电位

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑控是一种新的控制方法。传统脑控机器人主要是控制单个机器人完成特定任务,而脑控多机器人协作(MRC)任务是一个有待研究的新课题。本文介绍了参加世界机器人大赛“脑—机接口(BCI)脑控机器人比赛”获得“创新创意奖”的一个试验研究,试验设置了 2 个脑开关,采用基于稳态视觉诱发电位(SSVEP)的 BCI(SSVEP-BCI)控制人形机器人和机械臂完成协作任务。通过 10 名受试者的控制试验结果表明,通过适当设置脑开关,采用性能优良的 SSVEP-BCI 能够实现 MRC 任务的有效完成。本研究可望为未来实用化的脑控 MRC 任务系统的研究提供启发

References

[1]  6. He Shenghong, Zhang Rui, Wang Qihong, et al. A P300-based threshold-free brain switch and its application in wheelchair control. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(6): 715-725.
[2]  7. 李松, 伏云发, 杨秋红, 等. 基于左右手运动想象单通道脑电信号的预处理研究. 生物医学工程学杂志, 2016, 33(5): 862-866.
[3]  8. 尧德中, 刘铁军, 雷旭, 等. 基于脑电的脑-机接口:关键技术和应用前景. 电子科技大学学报, 2009, 38(5): 550-554.
[4]  13. 伏云发, 郭衍龙, 李松, 等. 基于SSVEP直接脑控机器人方向和速度研究. 自动化学报, 2016, 42(11): 1630-1640.
[5]  14. Bin G, Gao Xiaorong, Yan Zheng, et al. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng, 2009, 6(4): 046002.
[6]  15. 闫铮, 宾光宇, 高小榕. 基于左右视野双频率刺激的SSVEP脑-机接口. 清华大学学报: 自然科学版网络, 2009, 49(12): 2017-2020.
[7]  16. Cao Lei, Ju Zhengyu, Li Jie, et al. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J Neurosci Methods, 2015, 253: 10-17.
[8]  17. Zhang Yu, Zhou Guoxu, Jin Jing, et al. SSVEP recognition using common feature analysis in brain-computer interface. J Neurosci Methods, 2015, 244: 8-15.
[9]  18. Chang M H, Lee J S, Heo J, et al. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. J Neurosci Methods, 2016, 258: 104-113.
[10]  19. Qiu Shiyuan, Li Zhijun, He Wei, et al. Brain-machine interface and visual compressive Sensing-Based teleoperation control of an exoskeleton robot. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 58-69.
[11]  20. Wang Yijun, Chen Xiaogang, Gao Xiaorong, et al. A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(10): 1746-1752.
[12]  21. 吴正华, 尧德中. 不同颜色单色光产生的稳态视觉诱发电位的比较. 生物医学工程学杂志, 2008, 25(5): 1021-1024.
[13]  22. Sengelmann M, Engel A K, Maye A. Maximizing information transfer in SSVEP-based brain-computer interfaces. IEEE Trans Biomed Eng, 2017, 64(2): 381-394.
[14]  32. Pan Jiahui, Li Yuanqing, Zhang Rui, et al. Discrimination between control and idle states in asynchronous SSVEP-based brain switches: a pseudo-key-based approach. IEEE Trans Neural Syst Rehabil Eng, 2013, 21(3): 435-443.
[15]  1. Mcfarland D J, Vaughan T M. BCI in practice. Prog Brain Res, 2016, 228: 389-404.
[16]  2. 王行愚, 金晶, 张宇, 等. 脑控:基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221.
[17]  3. 伏云发, 王越超, 李洪谊, 等. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246.
[18]  4. 明东, 蒋晟龙, 王忠鹏, 等. 基于人机信息交互的助行外骨骼机器人技术进展. 自动化学报, 2017, 43(7): 1089-1100.
[19]  5. 李松, 熊馨, 伏云发. 基于脑电信号神经反馈控制智能小车的研究. 生物医学工程学杂志, 2018, 35(1): 15-24.
[20]  9. Jin Jing, Allison B Z, Sellers E W, et al. Optimized stimulus presentation patterns for an event-related potential EEG-based brain-computer interface. Med Biol Eng Comput, 2011, 49(2): 181-191.
[21]  10. Yan Zheng, Gao Xiaorong, Gao Shangkai. Right-and-left visual field stimulation: a frequency and space mixed coding method for SSVEP based brain-computer interface. Science China Information Sciences, 2011, 54(12): 2492-2498.
[22]  11. Zou H L, Li Y Q, Long J Y, et al. Integrated control system based on brain-computer interfaces. Computer Engineering and Applicattons, 2012, 48(s): 76-78.
[23]  12. Wang H T, Li Y Q, Yu T Y. Coordinated control of an intelligent wheelchair based on a brain-computer interface and speech recognition. Journal of Zhejiang University-Science C-Computers & Electronics, 2014, 15(10): 832-838.
[24]  23. Zhao Xing, Zhao Dechun, Wang Xia, et al. A SSVEP stimuli encoding method using trinary frequency-shift keying encoded SSVEP (TFSK-SSVEP). Front Hum Neurosci, 2017, 11: 278.
[25]  24. Punsawad Y, Wongsawat Y. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Med Biol Eng Comput, 2017, 55(6): 965-977.
[26]  25. Li Yun, Bin Guangyu, Gao Xiaorong, et al. Analysis of phase coding SSVEP based on canonical correlation analysis (CCA). 5th International IEEE Engineering-in-Medicine-and-Biology-Society (EMBS) Conference on Neural Engineering (NER), Cancun, 2011. DOI: 10.1109/NER.2011.5910563.
[27]  26. Merino L M, Nayak T, Hall G, et al. Detection of control or idle state with a likelihood ratio test in asynchronous SSVEP-based brain-computer interface systems. Conf Proc IEEE Eng Med Biol Soc, 2016, 2016: 1568-1571.
[28]  27. Ramli R, Arof H, Ibrahim F, et al. Using finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigation. Expert Syst Appl, 2015, 42(5): 2451-2463.
[29]  28. Liu Y H, Wang S H, Hu M R. A self-paced P300 healthcare brain-computer interface system with SSVEP-based switching control and kernel FDA + SVM-based detector. Applied Sciences, 2016, 6(5): 142.
[30]  29. Spyrou L, Blokland Y, Farquhar J, et al. Optimal multitrial prediction combination and Subject-Specific adaptation for minimal training brain switch designs. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(6): 700-709.
[31]  30. Blokland Y, Spyrou L, Thijssen D, et al. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE Trans Neural Syst Rehabil Eng, 2014, 22(2): 222-229.
[32]  31. Lim J H, Kim Y W, Lee J H, et al. An emergency call system for patients in locked-in state using an SSVEP-based brain switch. Psychophysiology, 2017, 54(11): 1632-1643.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133