11. 枚春成(Mai Xuan Thanh). 二级结构对抗菌肽的抗菌活性及特异性的影响. 长春: 吉林大学, 2013.
[4]
12. Smith V J, Desbois A P, Dyrynda E A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs, 2010, 8(4): 1213-1262.
[5]
13. Pandey B K, Ahmad A, Asthana N, et al. Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry, 2010, 49(36): 7920-7929.
[6]
14. Yount N Y, Andrés M T, Fierro J F, et al. The γ-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim Biophys Acta, 2007, 1768(11): 2862-2872.
[7]
15. Song Y S, Kang J H, Jang S Y, et al. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim Biophys Acta, 2000, 1463(2): 209-218.
[8]
7. Wiradharma N, Liu S Q, Yang Y Y. Branched and 4-arm starlike α-helical peptide structures with enhanced antimicrobial potency and selectivity. Small, 2012, 8(3): 362-366.
[9]
8. Hoffknecht B C, Prochnow P, Bandow J E, et al. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates. J Inorg Biochem, 2016, 160: 246-249.
[10]
1. O’Connor P M, Ross R P, Hill C, et al. Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food Science, 2015, 2(4): 51-57.
4. Cho J, Choi H, Lee D G. Influence of the N- and C-terminal regions of antimicrobial peptide pleurocidin on antibacterial activity. J Microbiol Biotechnol, 2012, 22(10): 1367-1374.
[14]
5. Wu M, Hancock R E. Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Antimicrob Agents Chemother, 1999, 43(5): 1274-1276.
[15]
9. Li Weizhong, Tan Tingting, Xu Wei, et al. Rational design of mirror-like peptides with alanine regulation. Amino Acids, 2016, 48(2): 403-417.
[16]
16. Chou S, Shao Changxuan, Wang Jiajun, et al. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater, 2016, 30: 78-93.
[17]
17. Zhu Xin, Zhang Licong, Wang Jue, et al. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater, 2015, 18(4): 155-167.
[18]
18. Ma Qingquan, Dong Na, Shan Anshan, et al. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids, 2012, 43(6): 2527-2536.