8. Lum P S, Burgar C G, Shor P C, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil, 2002, 83(7): 952-959.
11. Masiero S, Armani M, Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: Focused review and results of new randomized controlled trial. J Rehabil Res Dev, 2011, 48(4): 355-366.
[5]
12. Fong J, Crocher V, Oetomo D, et al. Effects of robotic exoskeleton dynamics on joint recruitment in a neurorehabilitation context// 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015: 834-839.
[6]
13. Coote S, Murphy B, Harwin W, et al. The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil, 2008, 22(5): 395-405.
[7]
14. Nef T, Riener R. ARMin-design of a novel arm rehabilitation robot// 9th International Conference on Rehabilitation Robotics. Chicago: ICORR, 2005: 57-60.
[8]
15. Turchetti G, Vitiello N, Trieste L, et al. Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. IEEE Rev Biomed Eng, 2014, 7: 143-153.
[9]
16. Fong J, Crocher V, Oetomo D, et al. An investigation into the reliability of upper-limb robotic exoskeleton measurements for clinical evaluation in neurorehabilitation// 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier: IEEE, 2015: 795-798.
6. Adebiyi D A. Fabrication and characterization of beta-prototype MIT Manus: an intelligent machine for upper-limb physical therapy. Cambridge: Massachusetts Institute of Technology, 2008.