全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于功率谱的睡眠中癫痫发作预测

DOI: doi:10.7507/1001-5515.201708062

Keywords: 癫痫预测, 脑电信号, 功率谱, 支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

睡眠中如果癫痫发作会增加患者并发症发作和猝死的概率,有效预测患者睡眠中的癫痫发作可让医患及时采取措施,降低上述概率。现有癫痫发作预测方法多是基于脑电信号设计的,但并未在睡眠时期进行针对性研究,而该时期脑电信号相比其他时期有其特殊性,因此为提高灵敏度、降低错误报警率,本文将挖掘睡眠脑电信号的特点,研究睡眠中癫痫发作的预测方法。本文提出的方法中首先构建特征向量,包括不同波段的绝对功率谱、相对功率谱和功率谱比值;其次应用分离性判据和分支定界法进行特征选择;最后训练支持向量机分类器并实现预测。相比于不针对睡眠脑电信号特点的癫痫预测方法(灵敏度 91.67%,错误报警率 9.19%),本文方法的灵敏度(100%)有所提高,而错误报警率(2.11%)则有所降低。本文方法是对现有癫痫预测方法的补充,具有一定的临床价值

References

[1]  12. Fergus P, Hussain A, Hignett D, et al. A machine learning system for automated whole-brain seizure detection. Applied Computing & Informatics, 2016, 12(1): 70-89.
[2]  13. Lyu M R, Wang N. Exploration of instantaneous amplitude and frequency features for epileptic seizure prediction// IEEE 12th International Conference on Bioinformatics & Bioengineering, Larnaca, 2012: 292-297.
[3]  14. Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220.
[4]  15. Worrell G A, Parish L, Cranstoun S D, et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain, 2004, 127(Pt 7): 1496-1506.
[5]  16. Bandarabadi M, Teixeira C A, Netoff T I, et al. Robust and low complexity algorithms for seizure detection//36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago,2014: 4447-4450.
[6]  17. Kariwala V, Ye Lingjian, Cao Yi. Branch and bound method for regression-based controlled variable selection. Comput Chem Eng, 2013, 54: 1-7.
[7]  1. Langan Y, Nashef L, Sander J W. Case-control study of SUDEP. Neurology, 2005, 64(7): 1131-1133.
[8]  2. Cuppens K, Lagae L, Ceulemans B, et al. Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy. Med Biol Eng Comput, 2010, 48(9): 923-931.
[9]  3. Salem O, Rebhi Y, Boumaza A, et al. Detection of nocturnal epileptic seizures using wireless 3-D accelerometer sensors//IEEE 16th International Conference on E-Health Networking, Applications and Services. Natal, 2014: 237-242.
[10]  4. Fulton S, Poppel K V, Mcgregor A, et al. Prospective study of 2 bed alarms for detection of nocturnal seizures. J Child Neurol, 2013, 28(11): 1430-1433.
[11]  5. 刘晓燕. 临床脑电图学. 北京: 人民卫生出版社, 2006: 126-127.
[12]  6. Giannakakis G, Sakkalis V, Pediaditis M, et al. Methods for seizure detection and prediction: an overview. Sakkalis V. Modern Electroencephalographic Assessment Techniques, New York, Hymana Press, 2014: 131-157.
[13]  7. Shoeb A, Edwards H, Connolly J, et al. Patient-specific seizure onset detection. Epilepsy Behav, 2004, 5(4): 483-498.
[14]  8. Fathima T, Bedeeuzzaman M, Farooq O, et al. Wavelet based features for epileptic seizure detection. MES Journal of Technology and Management, 2011, 2(1): 108-112.
[15]  9. Park Y, Luo Lan, Parhi K K, et al. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia, 2011, 52(10): 1761-1770.
[16]  10. Alarcon G, Binnie C D, Elwes R D, et al. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol, 1995, 94(5): 326-337.
[17]  11. Bandarabadi M, Teixeira C A, Rasekhi J, et al. Epileptic seizure prediction using relative spectral power features. Clin Neurophysiol, 2015, 126(2): 237-248.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133