全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

硬化蛋白在内翻畸形膝关节内外侧胫骨平台软骨下骨中的表达差异及其意义

DOI: doi:10.7507/1002-1892.201610082

Keywords: 骨关节炎, 软骨下骨, 骨重塑, 硬化蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 比较内翻畸形膝关节骨关节炎内、外侧胫骨平台软骨下骨中硬化蛋白表达差异,探讨其发生机制及意义。 方法 取 2015 年 3 月—10 月 20 例接受人工全膝关节置换术的内翻畸形膝关节骨关节炎患者自愿捐赠的胫骨平台标本。其中,男 8 例,女 12 例;年龄 61~78 岁,平均 67.8 岁。病程 2~5 年,平均 3.2 年。术前均摄膝关节 X 线片,测量内翻角为 12.0~25.5°,平均 17.6°;Kellgren-Lawrance 分级:Ⅲ级 5 例、Ⅳ级 15 例,均以内侧间室病变为主。取内、外侧胫骨平台软骨下骨行 Micro-CT 检查,比较骨结构变化差异;测量骨体积分数(bone volume/total volume,BV/TV)、骨小梁数量(trabecular number,Tb.N)、骨小梁厚度(trabecular thickness,Tb.Th)、结构模型指数(structure model index,SMI)、骨小梁分离度(trabecular separation,Tb.Sp);行免疫组织化学染色及实时荧光定量 PCR 检测硬化蛋白以及 sost 基因表达水平。 结果 Micro-CT 显示,与外侧软骨下骨相比,内侧软骨下骨骨量增加,孔隙减少;内侧软骨下骨 BV/TV、Tb.N、Tb.Th 较外侧显著增高,SMI、Tb.Sp 较外侧显著降低,比较差异均有统计学意义(P<0.05)。实时荧光定量 PCR 检测,内侧胫骨平台软骨下骨中 sost 基因表达为 1.000,外侧为 4.157±2.790,比较差异有统计学意义(t=2.371,P=0.040)。内侧软骨下骨中硬化蛋白表达阳性细胞所占百分比为 7.20%±0.04%,较外侧软骨下骨(52.00%±0.19%)显著降低,比较差异有统计学意义(t=5.094,P=0.005)。 结论 内翻畸形膝关节骨关节炎患者的内侧胫骨平台软骨下骨成骨增加,硬化蛋白表达降低可能是促进骨重塑、加重膝内翻畸形的一个重要因素

References

[1]  2. Brandt KD, Radin EL, Dieppe PA,et al. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis, 2006, 65(10): 1261-1264.
[2]  5. Botter SM, van Osch GJ, Clockaerts S,et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum, 2011, 63(9): 2690-2699.
[3]  6. Jaiprakash A, Prasadam I, Feng JQ,et al. Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci, 2012, 8(3): 406-417.
[4]  8. Veverka V, Henry AJ, Slocombe PM,et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem, 2009, 284(16): 10890-10900.
[5]  14. Compton JT, Lee FY. A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg (Am), 2014, 96(19): 1659-1668.
[6]  20. MacNabb C, Patton D, Hayes JS. Sclerostin antibody therapy for the treatment of osteoporosis: Clinical prospects and challenges. J Osteoporos, 2016, 2016: 6217286.
[7]  21. Appelman-Dijkstra NM, Papapoulos SE. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int, 2016, 98(4): 370-380.
[8]  22. Barr AJ, Campbell TM, Hopkinson D,et al. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Res Ther, 2015, 17(25): 228.
[9]  9. Wu L, Guo H, Sun K,et al. Sclerostin expression in the subchondral bone of patients with knee osteoarthritis. Int J Mol Med, 2016, 38(5): 1395-1402.
[10]  12. Nevitt MC, Zhang Y, Javaid MK,et al. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis, 2010, 69(1): 163-168.
[11]  13. Finnil? MA, Thevenot J, Aho OM,et al. Association between subchondral bone structure and osteoarthritis histopathological grade. J Orthop Res, 2016. [Epub ahead of print].
[12]  15. Robling AG, Niziolek PJ, Baldridge LA,et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem, 2008, 283(9): 5866-5875.
[13]  17. Goldring SR. The osteocyte: key player in regulating bone turnover. RMD Open, 2015, 1(Suppl 1): e000049.
[14]  18. Chou CH, Wu CC, Song IW,et al. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res Ther, 2013, 15(6): R190.
[15]  19. Becker CB. Sclerostin inhibition for osteoporosis——a new approach. N Engl J Med, 2014, 370(5): 476-477.
[16]  1. ?Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol, 2015, 27(4): 420-426.
[17]  3. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res, 1986, (213): 34-40.
[18]  4. Sharma AR, Jagga S, Lee SS,et al. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci, 2013, 14(10): 19805-19830.
[19]  7. Pritzker KP, Gay S, Jimenez SA,et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage, 2006, 14(1): 13-29.
[20]  10. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis, 1957, 16(4): 494-502.
[21]  11. Yu DG, Nie SB, Liu FX,et al. Dynamic alterations in microarchitecture, mineralization and mechanical property of subchondral bone in rat medial meniscal tear model of osteoarthritis. Chin Med J (Engl), 2015, 128(21): 2879-2886.
[22]  16. Spatz JM, Wein MN, Gooi JH,et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytesin vitro. J Biol Chem, 2015, 290(27): 16744-16758.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133