全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

应力调节人椎间盘软骨终板干细胞成骨分化的研究

DOI: doi:10.7507/1002-1892.20150074

Keywords: 软骨终板干细胞, 拉伸应力, BMP-2, 成骨分化

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的探讨周期性拉伸应力对人椎间盘软骨终板干细胞(cartilage endplate-derived stem cells,CESCs)成骨分化的影响。 方法利用琼脂糖悬浮培养系统从人退变椎间盘软骨终板中分离CESCs。取部分软骨终板组织用于免疫组织化学染色。采用Flexercell-4000TM应力加载系统对接种于培养板内的第3代CESCs分别施加1、6、12、24 h的拉伸刺激(实验组),拉伸率为10%,频率1 Hz;以同样条件接种于培养板不进行牵拉的静态培养细胞为对照组。加载完成后,Western blot检测CESCs中BMP-2蛋白的表达变化;实时荧光定量PCR检测Runx2、ALP及SOX9基因的表达变化。 结果免疫组织化学染色提示BMP-2蛋白表达于软骨细胞。Western blot检测示,10%的持续周期性拉伸应力可上调CESCs中BMP-2蛋白相对表达量,除1 h外,实验组其余各拉伸时间点BMP-2蛋白相对表达量与对照组比较差异均有统计学意义(P<0.05),并具有时间依赖性。实时荧光定量PCR检测示,周期性拉伸应力上调了Runx2和ALP mRNA表达,下调了SOX9 mRNA表达,实验组拉伸12、24 h的Runx2和ALP mRNA相对表达量及拉伸6、12、24 h的SOX9 mRNA相对表达量与对照组比较差异均有统计学意义(P<0.05),并具有时间依赖性。 结论周期性拉伸应力作用于体外培养的CESCs,可通过调节部分成骨相关基因的表达诱导CESCs向成骨方向分化

References

[1]  4. Jain AP, Pundir S, Sharma A. Bone morphogenetic proteins:The anomalous molecules. J Indian Soc Periodontol, 2013, 17(5):583-586.
[2]  6. Than KD, Rahman SU, Vanaman MJ, et al. Bone morphogenetic proteins and degenerative disk disease. Neurosurgery, 2012, 70(4):996-1002.
[3]  7. Hiyama A, Sakai D, Tanaka M, et al. The relationship between the Wnt/β-catenin and TGF-β/BMP signals in the intervertebral disc cell. J Cell Physiol, 2011, 226(5):1139-1148.
[4]  8. Chen D, Ji X, Harris MA, et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol, 1998, 142(1):295-305.
[5]  3. Maerz T, Herkowitz H, Baker K. Molecular and genetic advances in the regeneration of the intervertebral disc. Surg Neurol Int, 2013, 4(Suppl 2):S94-S105.
[6]  1. Stefanakis M, Luo J, Pollintine P, et al. IS SLS Prize winner:Mechanical influences in progressive intervertebral disc degeneration. Spine (Phila Pa 1976), 2014, 39(17):1365-1372.
[7]  2. Neidlinger-Wilke C, Galbusera F, Pratsinis H, et al. Mechanical loading of the intervertebral disc:from the macroscopic to the cellular level. Eur Spine J, 2014, 23 Suppl 3:S333-343.
[8]  5. Takae R, Matsunaga S, Origuchi N, et al. Immunolocalization of bone morphogenetic protein and its receptors in degeneration of intervertebral disc. Spine (Phila Pa 1976), 1999, 24(14):1397-1401.
[9]  9. Rui YF, Lui PP, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res, 2011, 29(3):390-396.
[10]  10. Susperregui AR, Vi?als F, Ho PW, et al. BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. J Cell Physiol, 2008, 216(1):144-152.
[11]  11. Huang B, Liu LT, Li CQ, et al. Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J, 2012, 21(4):613-622.
[12]  12. Liu LT, Huang B, Li CQ, et al. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One, 2011, 6(10):e26285.
[13]  13. Burdick JA, Vunjak-Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A, 2009, 15(2):205-219.
[14]  14. Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep, 2010, 8(2):98-104.
[15]  15. Dado D, Sagi M, Levenberg S, et al. Mechanical control of stem cell differentiation. Regen Med, 2012, 7(1):101-116.
[16]  16. Camilleri S, McDonald F. Runx2 and dental development. Eur J Oral Sci, 2006, 114(5):361-373.
[17]  17. Kanno T, Takahashi T, Ariyoshi W, et al. Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells:implications for distraction osteogenesis. J Oral Maxillofac Surg, 2005, 63(4):499-504.
[18]  18. Stein GS, Lian JB. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev, 1993, 14(4):424-442.
[19]  19. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices:effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng, 2006, 12(12):3459-3465.
[20]  20. Sowa G, Vadalà G, Studer R, et al. Characterization of intervertebral disc aging:longitudinal analysis of a rabbit model by magnetic resonance imaging, histology, and gene expression. Spine, 2008, 33(17):1821-1828.
[21]  21. Yang X, Gong P, Lin Y, et al. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Arch Med Sci, 2010, 6(2):152-159.
[22]  22. Sato M, Ochi T, Nakase T, et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res, 1999, 14(7):1084-1095.
[23]  23. Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet, 1995, 9(1):15-20.
[24]  24. Bi W, Deng JM, Zhang Z, et al. Sox9 is required for cartilage formation. Nat Genet, 1999, 22(1):85-89.
[25]  25. Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine (Phila Pa 1976), 2003, 28(8):755-763.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133