|
- 2018
CoFe2与CoFe2O4质量比及MgO稀释对CoFe2@CoFe2O4磁性的影响
|
Abstract:
采用金属有机盐热分解方法制备了MgO包覆的CoFe2O4纳米粒子(CoFe2O4@MgO),然后将CoFe2O4@MgO在H2中还原,接着在空气中氧化制备了一组CoFe2@CoFe2O4@MgO样品;用盐酸溶液溶解CoFe2@CoFe2O4@MgO中的MgO获得另一组样品(CoFe2@CoF2O4)。测量并绘制了CoFe2@CoFe2O4@MgO和CoFe2@CoF2O4的磁化强度随外磁场及温度变化的关系曲线。随着氧化温度升高,CoFe2@CoFe2O4@MgO和CoFe2@CoF2O4的矫顽力Hc、饱和磁化强度Ms、剩磁比Mr/Ms及磁有序状态发生显著变化,这些变化强烈依赖于磁性粒子的各向异性及粒子间的偶极相互作用。 MgO coated CoFe2O4 nanoparticles (CoFe2O4@MgO) were synthesized by the thermal decomposition of a metal-organic salt. CoFe2O4@MgO was reduced in H2 and then oxidized in air to prepare a group of CoFe2@CoFe2O4@MgO samples. Then MgO was dissolved by the HCl solution to obtain the other group of samples (CoFe2@CoF2O4). The magnetic field and temperature dependent magnetization curves were measured on CoFe2@CoF2O4 and CoFe2@CoFe2O4@MgO samples. The significant changes of coercivity Hc, saturation magnetization Ms and remanence ratio Mr/Ms as well as the magnetic ordering states with the oxidation temperature are observed for CoFe2@CoF2O4 and CoFe2@CoFe2O4@MgO samples, which strongly depend on the anisotropy of the magnetic particles and interparticle dipolar interaction. 国家自然科学基金(51471001)
[1] | OOI F, DUCHENE J S, QIU J J, et al. A facile solvothermal synthesis of octahedral Fe3O4 nanoparticles[J]. Small, 2015, 11(22):2649-2653. |
[2] | LI H S, ZHANG Y P, WANG S Y, et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique[J]. Journal of Hazardous Materials, 2009, 169(1):1045-1053. |
[3] | 张伯军, 陈敬艳, 刘梅, 等. 热处理温度对纳米CoFe2O4/SiO2复合材料结构和磁性的影响[J]. 复合材料学报, 2008, 25(3):144-148. ZHANG B J, CHEN J Y, LIU M, et al. Influence of heat treat temperature on structure and magnetic properties of CoFe2O4/SiO2 nanocomposite[J]. Acta Materiae Compositae Sinica, 2008, 25(3):144-148(in Chinese). |
[4] | SOARES J M, CABRAL F A O, DE-ARA AU'G JO J H, et al. Exchange-spring behavior in nanopowders of CoFe2O4-CoFe2[J]. Applied Physics Letters, 2011, 98(7):072502. |
[5] | XU S T, MA Y Q, ZHENG G H, et al. Simultaneous effects of surface spins:Rarely large coercivity, high remanence magnetization and jumps in the hysteresis loops observed in CoFe2O4 nanoparticles[J]. Nanoscale, 2015, 7(15):6520-6526. |
[6] | VARGAS J M, NUNES W C, SOCOLOVSKY L M, et al. Effect of dipolar interaction observed in iron-based nanoparticles[J]. Physical Review B, 2005, 72:184428. |
[7] | XU C J, SUN S H. New forms of superparamagnetic nanoparticles for biomedical applications[J]. Advanced Drug Deli-very Reviews, 2013, 65(5):732-743. |
[8] | 刘艳清, 吴钰涵, 张静, 等. 铁电相BiFeO3对多铁复合薄膜CoFe2O4-BiFeO3铁磁性能的影响[J]. 复合材料学报, 2013, 30(5):132-137. LIU Y Q, WU Y H, ZHANG J, et al. Influence of the BiFeO3 phase on ferromagnet properties of layered multiferroic CoFe2O4-BiFeO3 films[J]. Acta Materiae Compositae Sinica, 2013, 30(5):132-137(in Chinese). |
[9] | 马永青, 黄松, 徐士涛. 硬磁CoFe2O4/软磁CoFe2复合物的磁性研究[J]. 安徽大学学报(自然科学版), 2016, 40(1):37-41. MA Y Q, HUANG S, XU S T. Investigation on the magnetic properties of hard CoFe2O4/soft CoFe2 composites[J]. Journal of Anhui University (Natural Science Edition), 2016, 40(1):37-41(in Chinese). |
[10] | 昝芬莲, 马永青, 张贤, 等. 锶铁氧体矫顽力和剩磁增强的机理分析(英文)[J]. 安徽大学学报(自然科学版), 2014, 38(2):45-50. ZAN F L, MA Y Q, ZHANG X, et al. Mechanism analyses of coercivity and remanence enhancement in strontium ferrites[J]. Journal of Anhui University (Natural Science Edition), 2014, 38(2):45-50. |
[11] | 马倩, 马永青. Ni-Zn铁氧体的制备与磁相互作用分析(英文)[J]. 安徽大学学报(自然科学版), 2013, 37(1):44-49. MA Q, MA Y Q. Synthesis of Ni-Zn ferrites and analyses of magnetic interaction[J]. Journal of Anhui University (Natural Science Edition), 2013, 37(1):44-49. |
[12] | GENG B Q, DING Z L, MA Y Q. Unraveling the correlation between the remanence ratio and the dipolar field in magnetic nanoparticles by tuning concentration, moment and anisotropy[J]. Nano Research, 2016, 9(9):2772-2781. |
[13] | JI J Y, SHIH P H, CHAN T S, et al. Magnetic properties of cluster glassy Ni/NiO core-shell nanoparticles:An investigation of their static and dynamic magnetization[J]. Nanoscale Research Letters, 2015, 10(1):925. |
[14] | PETRACIC O, CHEN X, BEDANTA S, et al. Collective states of interacting ferromagnetic nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2006, 300(1):192-197. |
[15] | JIN J, SUN X, WANG M, et al. The magnetization reversal in CoFe2O4/CoFe2 granular systems[J]. Journal of Nanoparticle Research 2016, 18(12):383-392. |
[16] | HU L, DE-MONTFERRAND C, LALATONNE Y, et al. Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse Co x Fe3-x O4 nanoparticles within nonpolar and aqueous solvents[J]. Journal of Physical Chemistry C, 2012, 116(7):4349-4355. |
[17] | 李亚, 代建清, 张瑞浩, 等. 添加助烧剂对CoFe2O4/BaTiO3复相多铁材料性能的影响[J]. 复合材料学报, 2017, 34(3):632-637. LI Y, DAI J Q, ZHANG R H, et al. Effect of additive on properties of CoFe2O4/BaTiO3 multiphase magnetoelectric material[J]. Acta Materiae Compositae Sinica, 2017, 34(3):632-637(in Chinese). |
[18] | PENG S, WANG C, XIE J, et al. Synthesis and stabilization of monodisperse Fe nanoparticles[J]. Journal of the American Chemical Society, 2006, 128(33):10676-10677. |
[19] | ABBAS M, ISLAM M N, RAO B P, et al. Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures[J]. Materials Letters, 2015, 139:161-164. |