全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

石墨表面化学镀Cu对天然鳞片石墨/Al复合材料热物理性能的影响
Thermal conductivity and mechanical properties of flak graphite/Al composite with electroless Cu plating on graphite surface

DOI: 10.13801/j.cnki.fhclxb.20170614.001

Keywords: 石墨/Al,复合材料,热导率,弯曲强度,热压工艺,界面分析
graphite/Al
,composites,thermal conductivity,bending strength,hot pressing technique,interface analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

对天然鳞片石墨(GF)进行化学镀Cu的表面处理,对化学镀Cu石墨(Cu-GF)和Al粉采用真空热压的工艺制备出镀Cu石墨/Al(Cu-GF/Al)复合材料。研究了Cu-GF/Al复合材料的微观结构和微观界面,同时也研究了Cu-GF对Cu-GF/Al复合材料热导率和抗弯性能的影响。结果表明,GF上的Cu层能抑制界面脆弱相Al4C3的产生,使Cu-GF/Al复合材料的抗弯性能有了显著提升。当Cu-GF体积分数从50%增加到70%时,Cu-GF/Al复合材料的抗弯强度也从104 MPa降低到74 MPa。当GF体积分数为70%时,Cu-GF/Al复合材料的热导率达到最高值为522 W/(m·K)。 Cu was coated on the surface of the nature graphite flake (GF) by the electroless copper plating method, and then the Cu-GF/Al composites were fabricated by vacuum hot-press sintering with Cu-coated GF (Cu-GF) and Al powder. The microstructures and interfaces of Cu-GF/Al composites were studied and the effect of Cu-GF surface on the thermal conductivity and bending strength was investigated. The results show that the Cu layer inhibits the formation of Al4C3. Thus the bending strength of Cu-GF/Al composites is significantly enhanced after Cu coated and the value decreases from 104 to 74 MPa as Cu-GF volume fraction increases from 50% to 70%. The maximum thermal conductivity is 522 W/(m·K) when the volume fraction of GF is 70%. 国家自然科学基金青年科学基金(51501209)

References

[1]  曾婧, 彭超群, 王日初. 电子封装用金属基复合材料的研究进展[J]. 中国有色金属学报, 2015, 25(12):3255-3270. ZENG J, PENG C Q, WANG R C. Research and development of metal matrix composites for electronic packaging[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12):3255-3270(in Chinese).
[2]  王俊伟, 张现周, 薛晨, 等. 石墨表面镀Si对石墨/Al复合材料热物理性能的影响[J]. 复合材料学报, 2017, 34(4):281-288. WANG J W, ZHANG X Z, XUE C, et al. Effect of Si coated on graphite surface on thermal and mechanical properties of graphite/Al composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4):281-288(in Chinese).
[3]  卞军, 王刚, 周醒. 功能化石墨烯-碳纳米管协同强韧化HDPE纳米复合材料的制备和性能[J]. 材料研究学报, 2017, 31(2):136-144. BIAN J, WANG G, ZHOU X, Perparation and performance of nanocomposites hdpe toughened-reinforced synergetically with functionalized graphene and carborn nano tubes[J]. Chinese Journal of Materials Research, 2017, 31(2):136-144(in Chinese).
[4]  ZHU Y B, BAI H, et al. Thermal conductivity and mechanical properties of a flake graphite/Cu composite with a silicon nano-layer on a graphite surface[J]. RSC Advances, 2016, 6:98190-98196.
[5]  张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4):1-7. ZHANG D, ZHANG G D, LI Z Q. The current stateand trend of metal matrix composites[J]. Materials China, 2010, 29(4):1-7(in Chinese).
[6]  MIZUUCHI K, INOUE K, AGARI Y. Processing and thermal properties of Al/AlN composites in continuous solid-liquid co-existent state by spark plasma sintering[J]. Compo-sites Part B:Engineering, 2012, 43(3):1557-1563.
[7]  CHEN G, YANG W, DONG R. Interfacial microstructure and its effect on thermal conductivity of SiCp/Cu composites[J]. Materials & Design, 2014, 63(21):109-114.
[8]  XUE C, BAI H, TAO P F. Thermal conductivity and mechanical properties of flake graphite/Al composite with a SiC nano-layer on graphite surface[J]. Materials & Design, 2016, 108(100):250-258.
[9]  WANG C, BAI H, XUE C. On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Advances, 2016, 6(109):107483-107490.
[10]  万斌, 刘磊, 稂耘. 户外高压隔离开关用纯银/银石墨复合镀层的成分、形貌和生长机制[J]. 腐蚀与防护, 2016, 37(1):22-25. WAN B, LIU L, LANG Y. Composition, morphology and growth mechanism of fine silver/Ag-graphite composite coating for outdoor high voltage switch[J]. Corrosion & Protection, 2016, 37(1):22-25(in Chinese).
[11]  ZHANG L B, WANG J Q, WANG H G. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(9):1537-1545.
[12]  刘升华, 朱金华, 王紫潇. 不同形态填料填充导热复合材料的研究进展[J]. 材料开发与应用, 2017, 31(1):99-102, 108. LIU S H, ZHU J H, WANG Z X. Research progress of composite materials filled with different forms of thermal conductive fillers[J]. Development and Application of Materials, 2017, 31(1):99-102, 108(in Chinese).
[13]  MOLINA J, RODRíGUEZGUERRERO A, LOUIS E. Porosity effect on thermal properties of Al-12wt% Si/graphite composites[J], 2017, 10(2), 177.
[14]  CHUNG D D L. Materials for thermal conduction[J]. Applied Thermal Engineering, 2001, 21(16):1593-1605.
[15]  LI W, LIU Y, WU G. Preparation of graphite flakes/Al with preferred orientation and high thermal conductivity by squeeze casting[J]. Carbon, 2015, 95:545-551.
[16]  REN S, HONG Q, CHEN J. The influence of matrix alloy on the microstructure and properties of (flake graphite+diamond)/Cu composites by hot pressing[J]. Journal of Alloys and Compounds, 2015, 652:351-357.
[17]  KHALID F A, BEFFORT O, KLOTZ U E. Microstructure and interfacial characteristics of aluminium-diamond compo-site materials[J]. Diamond & Related Materials, 2004, 13(3):393-400.
[18]  ZHOU S, XU J, YANG Q H. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers[J]. Carbon, 2013, 57:452-459.
[19]  BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49(2):533-544.
[20]  BOM N M, JR M H O, SOARES G V. Synergistic effect of H2O and O2 on the decoupling of epitaxial monolayer graphene from SiC(0001) via thermal treatments[J]. Carbon, 2014, 78(11):298.
[21]  党婧, 刘婷婷. SiC颗粒-SiC晶须混杂填料/双马来酰亚胺树脂导热复合材料的制备与性能[J]. 复合材料学报, 2017, 34(2):263-269. DANG J, LIU T T. Fabrication and properties of SiCp-SiCw hybrid fillers/bismaleimide thermal conductivity composite[J]. Acta Materiae Compositae Sinica, 2017, 34(2):263-269(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133