|
- 2018
正交各向异性材料塑性极限与安定的下限分析
|
Abstract:
正交各向异性材料的塑性极限及安定计算仍处于研究及应用的初级阶段。该文将Hill屈服准则引入到塑性分析的Melan定理之中,结合有限元离散技术和非线性大规模优化算法,将下限分析列式转换为圆锥二次优化问题,对转换后的数学问题进行数值求解。所建立的计算平台及流程可以较高效地求解多种正交各向异性材料组成的复杂三维结构的塑性极限及安定载荷域,且完成了多个算例的计算。计算结果对比验证了该方法的正确性,同时也展现了该方法的普适性和较高的计算效率。该研究扩展了塑性极限及安定理论的应用范围,为含各向异性复合材料的结构工程设计及安全校核提供了可行的计算分析方法。
Abstract:The purpose of this study is to predict the plastic limit and the shakedown state of orthotropic materials and structures. The Hill yield criterion is used in Melan's theory with the finite element method and large scale nonlinear programing combined to form a model to predict the plastic limit and the shakedown state of complex 3D structures made from multi-orthotropic materials. Several numerical examples are given to verify the accuracy, universality and efficiency of this method. The applicability of using shakedown theory to plastic analyses is extended in this work. This method can be used to design and assess structures made from orthotropic composites in engineering practice .
[1] | LE C V, NGUYEN P H, ASKES H, et al. A computational homogenization approach for limit analysis of heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 2017, 112(10):1381-1401. |
[2] | 张宏涛, 刘应华, 徐秉业. 正交各向异性结构的塑性极限与安定下限分析[J]. 工程力学, 2006, 23(1):11-16. ZHANG H T, LIU Y H, XU B Y. Lower bound limit and shakedown analysis of orthotropic structures[J]. Engineering Mechanics, 2006, 23(1):11-16. (in Chinese) |
[3] | ZHANG H T, LIU Y H, XU B Y. Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis[J]. Acta Mechanica Solida Sinica, 2009, 22(1):73-84. |
[4] | MELAN E. Zur plastizit?t des r?umlichen kontinuums[J]. Archive of Applied Mechanics, 1938, 9(2):116-126. |
[5] | HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1948, 193(1033):281-297. |
[6] | CHEN S S, LIU Y H, CEN Z Z. Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48):3911-3921. |
[7] | CARVELLI V, CEN Z Z, LIU Y, et al. Shakedown analysis of defective pressure vessels by a kinematic approach[J]. Archive of Applied Mechanics, 1999, 69(9-10):751-764. |
[8] | ZHANG Y G, LU M W. Computational limit analysis of anisotropic axisymmetric shells[J]. International Journal of Pressure Vessels and Piping, 1994, 58(3):283-287. |
[9] | YU H S, SLOAN S W. Limit analysis of anisotropic soils using finite elements and linear programming[J]. Mechanics Research Communications, 1994, 21(6):545-554. |
[10] | YU H S, SLOAN S W. Finite element limit analysis of reinforced soils[J]. Computers & Structures, 1997, 63(3):567-577. |
[11] | CAPSONI A, CORRADI L, VENA P. Limit analysis of orthotropic structures based on Hill's yield condition[J]. International Journal of Solids and Structures, 2001, 38(22-23):3945-3963. |
[12] | 李华祥, 刘应华, 冯西桥, 等. 正交各向异性结构塑性极限载荷的上限分析[J]. 清华大学学报(自然科学版), 2001, 41(8):71-74. LI H X, LIU Y H, FENG X Q, et al. Upper bound analysis of plastic limit loads on orthotropic structures[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(8):71-74. (in Chinese) |
[13] | PASTOR J, TURGEMAN S, BOEHLER J P. Solution of anisotropic plasticity problems by using associated isotropic problems[J]. International Journal of Plasticity, 1990, 6(2):143-168. |
[14] | LI H X. Kinematic shakedown analysis of anisotropic heterogeneous materials:A homogenization approach[J]. Journal of Applied Mechanics, 2012, 79(4):041016. |
[15] | SIMON J W, WEICHERT D. Numerical lower bound shakedown analysis of engineering structures[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(41-44):2828-2839. |