%0 Journal Article %T 正交各向异性材料塑性极限与安定的下限分析<br>Lower bound analysis of plastic limit and shakedown state of orthotropic materials %A 秦方 %A 张乐乐 %A 陈敏 %A 陈耕 %J 清华大学学报(自然科学版) %D 2018 %R 10.16511/j.cnki.qhdxxb.2018.22.050 %X 正交各向异性材料的塑性极限及安定计算仍处于研究及应用的初级阶段。该文将Hill屈服准则引入到塑性分析的Melan定理之中,结合有限元离散技术和非线性大规模优化算法,将下限分析列式转换为圆锥二次优化问题,对转换后的数学问题进行数值求解。所建立的计算平台及流程可以较高效地求解多种正交各向异性材料组成的复杂三维结构的塑性极限及安定载荷域,且完成了多个算例的计算。计算结果对比验证了该方法的正确性,同时也展现了该方法的普适性和较高的计算效率。该研究扩展了塑性极限及安定理论的应用范围,为含各向异性复合材料的结构工程设计及安全校核提供了可行的计算分析方法。<br>Abstract:The purpose of this study is to predict the plastic limit and the shakedown state of orthotropic materials and structures. The Hill yield criterion is used in Melan's theory with the finite element method and large scale nonlinear programing combined to form a model to predict the plastic limit and the shakedown state of complex 3D structures made from multi-orthotropic materials. Several numerical examples are given to verify the accuracy, universality and efficiency of this method. The applicability of using shakedown theory to plastic analyses is extended in this work. This method can be used to design and assess structures made from orthotropic composites in engineering practice . %K 塑性极限 %K 安定状态 %K 下限分析 %K 正交各向异性材料 %K Hill屈服准则 %K 圆锥二次优化 %K < %K br> %K plastic limit %K shakedown state %K lower bound analysis %K orthotropic material %K Hill yield criterion %K conic quadratic optimization %U http://jst.tsinghuajournals.com/CN/Y2018/V58/I11/966