全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

微流体流式细胞仪的关键技术
Key techniques in microfluidic flow cytometers

DOI: 10.16511/j.cnki.qhdxxb.2018.26.036

Keywords: 流式细胞仪,微流体,细胞分选,二元光学器件,荧光检测,流式细胞术,
flow cytometer
,microfluidics,cell sorting,binary optical element,fluorescence detection,flow cytometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

流式细胞仪是用于高通量细胞分析和分选的高端生命科学仪器,被广泛应用于科学研究和临床诊断。最新的一个发展方向是以微流体芯片为核心的高集成度、微体积、全封闭、零交叉污染的微流体流式细胞仪。该文针对微流体流式细胞仪的三维(3-D)样本聚焦、光斑整形和片上分选等3项关键技术开展了研究。3-D流体动力聚焦微流体芯片能够在每秒数米的高流速下将样本流聚焦在流道中心,聚焦后的样本流边长仅为10 μm量级。经设计的二元光学器件可将激光光斑整形为矩形准平顶光斑,比传统流式所使用的椭圆形Gauss光斑,矩形平顶光斑具有更均一的能量分布。采用电火花空化微气泡,利用空泡膨胀产生的射流实现高精度的单细胞片上分选。将整合了上述技术的微流体流式细胞仪应用于标准荧光微球的分析测试,综合性能达到或接近于现有的大型传统流式细胞仪。
Abstract:Flow cytometers are biomedical instruments for high throughput analyses and sorting of single cells which are widely used in both biomedical research and clinical diagnoses. Advances in microfluidics have led to highly-integrated, compact, fully-enclosed, and no cross-contamination microfluidic flow cytometers. This study focuses on three key techniques with 3-D focusing of the sample flow, laser beam shaping, and on-chip sorting. 3-D focusing microfluidic chips confine the sample flow down to 10 micrometers at a velocity of several meters per second. Specially-designed binary optical elements (BOEs) generate micrometer-scale rectangular quasi-flat spots for exciting fluorescence that replace conventional elliptical Gaussian spots. These give an on-chip sorting mechanism based on the jet-flow by expanding spark-induced cavitation microbubbles. A microfluidic test system is developed by combining these three techniques with performance that is close to that of two commercial instruments.

References

[1]  DI C D. Inertial microfluidics[J]. Lab on A Chip, 2009, 9(21):3038-3046.
[2]  MCCLAIN M A, CULBERTSON C T, JACOBSON S C, et al. Flow cytometry of Escherichia coli on microfluidic devices[J]. Analytical Chemistry, 2001, 73(21):5334-5338.
[3]  JIANG H, WENG X, LI D Q. A novel microfluidic flow focusing method[J]. Biomicrofluidics, 2014, 8(5), 054120.
[4]  CHURCH C, ZHU J J, WANG G Y, et al. Electrokinetic focusing and filtration of cells in a serpentine microchannel[J]. Biomicrofluidics, 2009, 3(4), 44109.
[5]  FU A Y, CHOU H P, SPENCE C, et al. An integrated microfabricated cell sorter[J]. Analytical Chemistry, 2002, 74(11):2451-2457.
[6]  CHEN C H, CHO S H, CHIANG H I, et al. Specific sorting of single bacterial cells with microfabricated fluorescence-activated cell sorting and tyramide signal amplification fluorescence in situ hybridization[J]. Analytical Chemistry, 2011, 83(19):7269-7275.
[7]  SAKUMA S, KASAI Y, HAYAKAWA T, et al. On-chip cell sorting by high-speed local-flow control using dual membrane pumps[J]. Lab on A Chip, 2017, 17(16):2760-2767.
[8]  MACOSKO E Z, BASU A, SATIJA R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5):1202-1214.
[9]  JAKOBSSON O, GRENVALL C, NORDIN M, et al. Acoustic actuated fluorescence activated sorting of microparticles[J]. Lab on A Chip, 2014, 14(11):1943-1950.
[10]  MA Z C, ZHOU Y N, COLLINS D J, et al. Fluorescence activated cell sorting via a focused traveling surface acoustic beam[J]. Lab on A Chip, 2017, 17(18):3176-3185.
[11]  OZAKI K, SUGINO H, SHIRASAKI Y, et al. Microfluidic cell sorter with flow switching triggered by a sol-gel transition of a thermos-reversible gelation polymer[J]. Sensors and Actuators B:Chemical, 2010, 150(1):449-455.
[12]  HOLMES D, SANDISON M E, GREEN N G, et al. On-chip high-speed sorting of micron-sized particles for high-throughput analysis[J]. IEE Proceedings-Nanobiotechnology, 2005, 152(4):129-135.
[13]  PERROUD T D, KAISER J N, SY J C, et al. Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces[J]. Analytical Chemistry, 2008, 80(16):6365-6372.
[14]  MEINEKE G, HERMANS M, KLOS J, et al. A microfluidic opto-caloric switch for sorting of particles by using 3D-hydrodynamic focusing based on SLE fabrication capabilities[J]. Lab on A Chip, 2016, 16(5):820-828.
[15]  VAN DEN BROEK D M, ELWENSPOEK M. Explosive micro-bubble actuator[C]//International Solid-State Sensors, Actuators and Microsystems Conference. Lyon, France:IEEE, 2007:387-393.
[16]  GIVAN A L. Flow cytometry:First principles[M]. 2nd ed. New York:Wiley-Liss, 2001.
[17]  NORDIN M, LAURELL T. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis[J]. Lab on A Chip, 2012, 12(22):4610-4616.
[18]  SHAPIRO H M. Practical flow cytometry[M]. New York:John Wiley & Sons Inc, 2005:1-60.
[19]  TESTA G, PERSICHETTI G, BERNINI R. Micro flow cytometer with self-aligned 3-D hydrodynamic focusing[J]. Biomedical Optics Express, 2015, 6(1):54-62.
[20]  ZHAO J J, YOU Z. Spark-generated microbubble cell sorter for microfluidic flow cytometry[J]. Cytometry. Part A:The Journal of the International Society for Analytical Cytology, 2018, 93(2):222-231.
[21]  PAIèP, BRAGHERI F, VAZQUEZ R M, et al. Straightforward 3-D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels[J]. Lab on A Chip, 2014, 14(11):1826-1833.
[22]  YANG R J, HOU H H, WANG Y N, et al. A hydrodynamic focusing microchannel based on micro-weir shear lift force[J]. Biomicrofluidics, 2012, 6(3), 34110.
[23]  DITTRICH P S, SCHWILLE P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles[J]. Analytical Chemistry, 2003, 75(21):5767-5774.
[24]  SEGER U, GAWAD S, JOHANN R, et al. Cell immersion and cell dipping in microfluidic devices[J]. Lab on A Chip, 2004, 4(2):148-151.
[25]  JEONG J S, LEE J W, LEE C Y, et al. Particle manipulation in a microfluidic channel using acoustic trap[J]. Biomedical Microdevices, 2011, 13(4):779-788.
[26]  CHEN Y, CHUNG A J, WU T H, et al. Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing[J]. Small, 2014, 10(9):1746-1751.
[27]  ZHAO J J, YOU Z. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer[J]. Biomicrofluidics, 2016, 10(5):054111.
[28]  ZHAO J J, YOU Z. A microflow cytometer with a rectangular quasi-flat-top laser spot[J]. Sensors, 2016, 16(9):1474.
[29]  ZHAO J J, YOU Z. Microfluidic hydrodynamic focusing for high-throughput applications[J]. Journal of Micromechanics and Microengineering, 2015, 25(12):125006.
[30]  CORNISH R J. Flow in a pipe of rectangular cross-section[J]. Proceedings of the Royal Society A, 1928, 120(786):691-700.
[31]  赵精晶. 片上流式细胞仪的样本聚焦、光斑整型和分选技术研究[D]. 北京:清华大学, 2017. Zhao J J. Research on hydrodynamic focusing, beam shaping, and on-chip sorting of microfluidic flow cytometer[D] Beijing:Tsinghua University, 1987. (in Chinese)
[32]  于家珊. 电火花加工理论基础[M]. 北京:国防工业出版社, 2011. YU J S. Theoretical basis of electrical discharge machining[M]. Beijing:National Defense Industry Press, 2011. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133