全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201605124

Full-Text   Cite this paper   Add to My Lib

Abstract:

以SBA-15为前驱体,在660 ℃下通过镁热还原反应得到介孔硅材料,并对其进行碳包覆处理,成功地制备了有序介孔Si/C(OMP-Si/C)复合材料。该OMP-Si/C材料保留了SBA-15模板的有序蜂窝孔道,并且形成具有高堆积密度的莲藕链束结构。文中还提出了一个SBA-15镁热还原液态环境反应模型,探讨了660 ℃下硅的高度有序介孔与莲藕链束结构的形成机理。利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸脱附法及拉曼光谱对样品物相和微观形貌进行了表征。这种高度有序介孔Si/C复合材料具有优异的电化学性能,展现出其在第二代锂电池负极材料领域中的潜在应用价值。
A highly ordered mesoporous Si/C composite was prepared by magnesiothermic reduction method, using SBA-15 as the precursor at 660 ℃ with subsequent carbon coating. This Si/C composite preserved the ordered honeycomb pore channels of SBA-15 and exhibited a lotus root-like structure with high packing density. A liquid ambient reaction model is proposed to explain the reaction between SBA-15 and magnesium powder at 660 ℃ as well as the mechanism by which the highly ordered mesoporous structure is generated. The phase composition and morphology of this material were analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and Raman spectroscopy. The excellent electrochemical performance of the as-prepared material suggests potential applications as an anode material in second-generation Li-ion batteries

References

[1]  5 Peng K. Q. ; Jie J. S. ; Zhang W. J. ; Lee S. T. Appl. Phys. Lett 2008, 93, 033105. doi: 10.1063/1.2929373
[2]  6 Kim G. ; Jeong S. ; Shin J. ; Cho J. ; Lee H. ACS Nano 2014, 8, 1907. doi: 10.1021/nn406464c
[3]  11 Datta M. K. ; Maranchi J. ; Chung S. J. ; Epur R. ; Kadakia K. ; Jampani P. ; Kumta P. N. Electrochim. Acta 2011, 56, 4717. doi: 10.1016/j.electacta.2011.01.124
[4]  12 Tang Y. Y. ; Xia X. H. ; Yu Y. X. ; Shi S. J. ; Chen J. ; Zhang Y.Q. ; Tu J. P. Electrochim. Acta 2013, 88, 664. doi: 10.1016/j.electacta.2012.10.119
[5]  17 Zhang R. Y. ; Du Y. J. ; Li D. ; Shen D. K. ; Yang J. P. ; Guo Z.P. ; Liu H. K. ; Elzatahry A. A. ; Zhao D. Y. Adv. Mater 2014, 26, 6749. doi: 10.1002/adma.201402813
[6]  15 Jia H. P. ; Gao P. F. ; Yang J. ; Wang J. L. ; Nuli Y.N. ; Yang Z. Adv. Energy Mater 2011, 1, 1036. doi: 10.1002/aenm.201100485
[7]  1 Ding P. ; Xu Y. L. ; Sun X. F. Acta Phys.-Chim. Sin 2013, 29, 293. doi: 10.3866/PKU.WHXB201211142
[8]  丁朋; 徐友龙; 孙孝飞. 物理化学学报, 2013, 29, 293d. doi: 10.3866/PKU.WHXB201211142
[9]  2 Choi N. S. ; Chen Z. ; Freunberger S. A. ; Ji X. ; Sun Y. K. ; Amine K. ; Yushin G. ; Linda F. N. ; Cho J. ; Peter G. B. Angew. Chem. Int. Ed 2012, 51, 9994. doi: 10.1002/anie.201201429
[10]  3 Xu J. ; Wang X. F. ; Wang X.W. ; Chen D. ; Chen X. Y. ; Li D.D. ; Shen G. Z. ChemElectroChem 2014, 1, 975. doi: 10.1002/celc.201400001
[11]  7 Wu H. ; Cui Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004
[12]  8 Cui L. F. ; Ruffo R. ; Chan C. K. ; Peng H. L. ; Cui Y. Nano Lett 2009, 9, 491. doi: 10.1021/nl8036323
[13]  9 Zhou Y. L. ; Jiang X. L. ; Chen L. ; Yue J. ; Xu H. Y. ; Yang J. ; Qian Y. T. Electrochim. Acta 2014, 127, 252. doi: 10.1016/j.electacta.2014.01.158
[14]  10 Yao Y. ; McDowell M. T. ; Ryu I. ; Wu H. ; Liu N. ; Hu L. ; Nix W. D. ; Cui Y. Nano Lett 2011, 11, 2949. doi: 10.1021/nl201470j
[15]  14 Yue L. ; Zhang W. H. ; Yang J. F. ; Zhang L. Z. Electrochim. Acta 2014, 125, 206. doi: 10.1016/j.electacta.2014.01.094
[16]  16 Park J. B. ; Lee K. H. ; Jeon Y. J. ; Lim S. H. ; Lee S. M. Electrochim. Acta 2014, 133, 73. doi: 10.1016/j.electacta.2014.04.045
[17]  18 Park J. ; Kim G. P. ; Nam I. ; Park S. ; Yi J. H. Nanotechnology 2013, 24, 025602. doi: 10.1088/0957-4484/24/2/025602
[18]  19 Zhou Y. L. ; Jiang X. L. ; Chen L. ; Yu J. ; Xu H. Y. ; Yang J. ; Qian Y. T. Electrochim. Acta 2014, 127, 252. doi: 10.1002/aenm.201100765
[19]  20 Hong I. ; Scrosati B. ; Croce F. Solid State Ionics 2013, 232, 24. doi: 10.1016/j.ssi.2012.11.003
[20]  21 Tao H. C. ; Fan L. Z. ; Qu X. H. Electrochim. Acta 2012, 71, 194. doi: 10.1016/j.electacta.2012.03.139
[21]  22 Tao H. C. ; Huang M. ; Fan L. Z. ; Qu X.H. Solid State Ionics 2012, 220, 1. doi: 10.1016/j.ssi.2012.05.014
[22]  23 Wang B. ; Li X. L. ; Qiu T. F. ; Luo B. ; Ning J. ; Li J. ; Zhang X. F. ; Liang M. H. ; Zhi L. J. Nano Lett 2013, 13, 5578d. doi: 10.1021/nl403231v
[23]  24 Lu Z. D. ; Liu N. ; Lee H.W. ; Zhao J. ; Li W. Y. ; Li Y. Z. ; Cui Y. ACS Nano 2015, 9, 2540. doi: 10.1021/nn505410q
[24]  28 Liu X. R. ; Yan H. J. ; Wang D. ; Wan L. J. Acta Phys.-Chim. Sin 2016, 32, 283. doi: 10.3866/PKU.WHXB201511132
[25]  刘兴蕊; 严会娟; 王栋; 万立骏. 物理化学学报, 2016, 32, 283. doi: 10.3866/PKU.WHXB201511132
[26]  4 Munao D. ; Valvo M. ; Van Erven J. ; Kelder E. M. ; Hassoun J. ; Panero S. J. Mater. Chem 2012, 22, 1556. doi: 10.1039/C1JM13565A
[27]  13 Wang J. T. ; Wang Y. ; Huang B. ; Yang J. Y. ; Tan A. ; Lu S. G. Acta Phys.-Chim. Sin 2014, 30, 305. doi: 10.3866/PKU.WHXB201312022
[28]  王建涛; 王耀; 黄斌; 杨娟玉; 谭翱; 卢世刚. 物理化学学报, 2014, 30, 305d. doi: 10.3866/PKU.WHXB201312022
[29]  25 Du Y. J. ; Zhu G. N. ; Wang K. ; Wang Y. G. ; Wang C. X. ; Xia Y. Y. Electrochem. Commun 2013, 36, 107. doi: 10.1016/j.elecom.2013.09.019
[30]  26 Wang L. L. ; Munir Z. A. ; Maximov Y. M. J. Mater. Sci 1993, 28, 3693. doi: 10.1007/BF00353167
[31]  27 Jun S. ; Joo S. H. ; Ryoo R. ; Kruk M. ; Jaroniec M. ; Liu Z. ; Ohsuna T. ; Terasaki O. J. Am. Chem. Soc 2000, 122, 10712d. doi: 10.1021/ja002261e

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133