%0 Journal Article %T
%A 元莎 %A 唐艳平 %A 戴永年 %A 杨斌 %A 王剑华 %A 郭玉忠 %A 黄瑞安 %J 物理化学学报 %D 2016 %R 10.3866/PKU.WHXB201605124 %X 以SBA-15为前驱体,在660 ℃下通过镁热还原反应得到介孔硅材料,并对其进行碳包覆处理,成功地制备了有序介孔Si/C(OMP-Si/C)复合材料。该OMP-Si/C材料保留了SBA-15模板的有序蜂窝孔道,并且形成具有高堆积密度的莲藕链束结构。文中还提出了一个SBA-15镁热还原液态环境反应模型,探讨了660 ℃下硅的高度有序介孔与莲藕链束结构的形成机理。利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸脱附法及拉曼光谱对样品物相和微观形貌进行了表征。这种高度有序介孔Si/C复合材料具有优异的电化学性能,展现出其在第二代锂电池负极材料领域中的潜在应用价值。
A highly ordered mesoporous Si/C composite was prepared by magnesiothermic reduction method, using SBA-15 as the precursor at 660 ℃ with subsequent carbon coating. This Si/C composite preserved the ordered honeycomb pore channels of SBA-15 and exhibited a lotus root-like structure with high packing density. A liquid ambient reaction model is proposed to explain the reaction between SBA-15 and magnesium powder at 660 ℃ as well as the mechanism by which the highly ordered mesoporous structure is generated. The phase composition and morphology of this material were analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and Raman spectroscopy. The excellent electrochemical performance of the as-prepared material suggests potential applications as an anode material in second-generation Li-ion batteries %U http://www.whxb.pku.edu.cn/CN/Y2016/V32/I9/2280