全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

蛋鸡资源群体的盲肠长度全基因组关联分析
Genome-Wide Association Study (GWAS) for Cecum Length in Laying Hens

DOI: 10.13718/j.cnki.xdzk.2018.09.006

Keywords: 蛋鸡, 盲肠长度, GWAS, 遗传结构
laying hen
, cecum length, GWAS, genetic architecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的盲肠是鸡进一步消化和吸收养分,尤其是纤维的器官,对鸡的生长及后期产蛋都具有重要作用,因此鸡的盲肠长度是一个重要的生理指标. 方法通过对白来航鸡与东乡绿壳蛋鸡杂交所得F2代个体的盲肠长度进行测量,并运用单核苷酸多态性(SNP)芯片检测其基因分型,根据SNP检测数据运用SAS进行遗传评估,并用全基因组混合模型关联算法(GEMMA)进行单变量全基因组关联分析(GWAS). 结果结果显示,盲肠长度表现出中等遗传力(0.39).GWAS鉴定出54个SNP与盲肠的长度显著相关,且1号染色体170 Mb附近对于盲肠长度来说是一个重要区域.在这个区域,覆盖26个SNP位点的18个基因被定为候选基因,其中2个分别在编码序列(CDS)和3'非翻译区(3'UTR),对应于NHLRC3和SIAH3,它们可能是影响盲肠长度的重要SNP位点和基因. 结论利用GWAS筛选并鉴定出和鸡盲肠长度相关联的SNP位点及基因,将为揭示蛋鸡盲肠发育的机制和分子育种提供基础.
ObjectiveCecum is a chicken organ for digestion and absorption of nutrients, especially fiber, which plays an important role in the growth and egg production of chicken. So chicken cecum length is an important physiological index. Because studies on cecum length are limited, it is necessary to carry out a study of its genetic structure. MethodsIn the current study, the cecum length of the F2s of reciprocal crosses between white leghorn and Dongxiang was measured, the genotypes were detected using the SNP (single-nucleotide polymorphism) chip, the genetic evaluation was detected using the SAS according to the SNP data, and univariate analysis of genome-wide association (GWAS) was conducted with genome-wide efficient mixed model (GEMMA) correlation algorithm. ResultsResults showed that the cecum length exhibited a medium heritability (0.39). By GWAS we identified 54 SNPs significantly associated with cecum length, and about 170 Mb on Chromosome 1 was an important area for cecum length. In this region, 18 genes covering 26 SNPs were classified as candidate genes, two of which were in the coding sequence (CDS) and 3'untranslated region (3'UTR), corresponding to the NHLRC3 and SIAH3, respectively. They might be important SNPs and genes which influenced the cecum length in chicken. ConclusionThe SNPs and genes associated with cecum length in chicken were identified by GWAS. It will help to provide the basis for understanding the mechanism of cecum development and molecular breeding in laying hens.

References

[1]  HUME D, WHITELAW C B A, ARCHIBALD A. The Future of Animal Production:Improving Productivity and Sustainability[J]. The Journal of Agricultural Science, 2011, 149(S1): 9-16. DOI:10.1017/S0021859610001188
[2]  GAO J, REN J, ZHOU L H, et al. A Genome Scan for Quantitative Trait Loci Affecting the Length of Small Intestine in a White Duroc x Chinese Erhualian Intercross Resource Population[J]. Journal of Animal Breeding and Genetics, 2010, 127(2): 119-124. DOI:10.1111/jbg.2010.127.issue-2
[3]  GAO Y, DU Z Q, WEI W H, et al. Mapping Quantitative Trait Loci Regulating Chicken Body Composition Traits[J]. Animal Genetics, 2009, 40(6): 952-954. DOI:10.1111/age.2009.40.issue-6
[4]  AMBO M, MOURA A S, LEDUR M C, et al. Quantitative Trait Loci for Performance Traits in a Broiler x Layer Cross[J]. Animal Genetics, 2009, 40(2): 200-208. DOI:10.1111/age.2009.40.issue-2
[5]  PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK:A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses[J]. American Journal of Human Genetics, 2007, 81(3): 559-575. DOI:10.1086/519795
[6]  ZHAO J H. Gap:Genetic Analysis Package[J]. Journal of Statistical Software, 2007, 23(23): 313-336.
[7]  YANG J, LEE S H, GODDARD M E, et al. GCTA:A Tool for Genome-Wide Complex Trait Analysis[J]. American Journal of Human Genetics, 2011, 88(1): 76-82. DOI:10.1016/j.ajhg.2010.11.011
[8]  KINSELLA R J, KAHARI A, HAIDER S, et al. Ensembl BioMarts:a Hub for Data Retrieval Across Taxonomic Space[M]. Oxford: Oxford University Press, 2011.
[9]  DO D N, OSTERSEN T, STRATHE A B, et al. Genome-Wide Association and Systems Genetic Analyses of Residual Feed Intake, Daily Feed Consumption, Backfat and Weight Gain in Pigs[J]. BMC Genetics, 2014, 15(1): 27. DOI:10.1186/1471-2156-15-27
[10]  HIRSCHHORN J N, DALY M J. Genome-Wide Association Studies for Common Diseases and Complex Traits[J]. Nature Reviews Genetics, 2005, 6(2): 95-108. DOI:10.1038/nrg1521
[11]  ZHOU X, STEPHENS M. Genome-Wide Efficient Mixed Model Analysis for Association Studies[J]. Nature Genetics, 2012, 44(7): 821-824. DOI:10.1038/ng.2310
[12]  DE VERDAL H, NARCY A, BASTIANELLI D, et al. Improving the Efficiency of Feed Utilization in Poultry by Selection. 2. Genetic Parameters of Excretion Traits and Correlations with Anatomy of the Gastro-Intestinal Tract and Digestive Efficiency[J]. BMC Genetics, 2011, 12(1): 1-10. DOI:10.1186/1471-2156-12-1
[13]  MALJAARS P W, PETERS H P, KODDE A, et al. Length and Site of the Small Intestine Exposed to Fat Influences Hunger and Food Intake[J]. British Journal of Nutrition, 2011, 106(10): 1609-1615. DOI:10.1017/S0007114511002054
[14]  李利, 臧素敏, 王鹏, 等. 太行鸡和海兰灰蛋雏鸡盲肠主要消化生理特性的比较[J]. 畜牧与兽医, 2010, 42(11): 37-40.
[15]  MIGNON-GRASTEAU S, RIDEAU N, GABRIEL I, et al. Detection of QTL Controlling Feed Efficiency and Excretion in Chickens Fed a Wheat-Based Diet[J]. Genetics Selection Evolution, 2015, 47(1): 74. DOI:10.1186/s12711-015-0156-y
[16]  HUI Z, WANG Z, WANG S, et al. Progress of Genome Wide Association Study in Domestic Animals[J]. Journal of Animal Science & Biotechnology, 2012, 4(1): 291-298.
[17]  SHERMAN E L, NKRUMAH J D, MOORE S S. Whole Genome Single Nucleotide Polymorphism Associations with Feed Intake and Feed Efficiency in Beef Cattle[J]. Journal of Animal Science, 2010, 88(1): 16-22. DOI:10.2527/jas.2008-1759
[18]  BOLORMAA S, PRYCE J E, HAYES B J, et al. Multivariate Analysis of a Genome-Wide Association Study in Dairy Cattle[J]. Journal of Dairy Science, 2010, 93(8): 3818-3833. DOI:10.3168/jds.2009-2980
[19]  YUAN J, WANG K, YI G, et al. Genome-Wide Association Studies for Feed Intake and Efficiency in Two Laying Periods of Chickens[J]. Genetics Selection Evolution, 2015, 47(1): 82. DOI:10.1186/s12711-015-0161-1
[20]  YI G, SHEN M, YUAN J, et al. Genome-Wide Association Study Dissects Genetic Architecture Underlying Longitudinal Egg Weights in Chickens[J]. BMC Genomics, 2015, 16(1): 746. DOI:10.1186/s12864-015-1945-y
[21]  LEE S H, DECANDIA T R, RIPKE S, et al. Estimating the Proportion of Variation in Susceptibility to Schizophrenia Captured by Common SNPs[J]. Nature Genetics, 2012, 44(3): 247-250. DOI:10.1038/ng.1108
[22]  MCLAREN W, PRITCHARD B, RIOS D, et al. Deriving the Consequences of Genomic Variants with the Ensembl API and SNP Effect Predictor[J]. Bioinformatics, 2010, 26(16): 2069-2070. DOI:10.1093/bioinformatics/btq330
[23]  李燕, 康相涛, 孙桂荣, 等. 木寡糖对矮脚绿壳蛋鸡肠道长度及形态结构的影响[J]. 饲料研究, 2007(12): 67-69. DOI:10.3969/j.issn.1002-2813.2007.12.021
[24]  ZHANG W, YANG B, ZHANG J, et al. Genome-Wide Association Studies for Fatty Acid Metabolic Traits in Five Divergent Pig Populations[J]. Scientific Reports, 2016, 6: 24718. DOI:10.1038/srep24718
[25]  HASSON S A, KANE L A, YAMANO K, et al. High-Content Genome-Wide RNAi Screens Identify Regulators of Parkin Upstream of Mitophagy[J]. Nature, 2013, 504(7479): 291-295. DOI:10.1038/nature12748
[26]  占今舜, 詹康, 霍永久, 等. 苜蓿草颗粒饲料对鹅生长性能、肠道长度和血液生化指标的影响[J]. 中国农业大学学报(自然科学版), 2015, 20(3): 133-138.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133