|
- 2018
非自治的Kuramoto-Sivashinsky方程的拉回吸引子的后项紧性
|
Abstract:
本文运用一个关于后项紧的拉回吸引子的存在性定理,证明了非自治的Kuramoto-Sivashinsky方程在外力项是后项λ-缓增有限的假设条件下存在一个唯一的后项紧的拉回吸引子.后项一致Gronwa引理是证明相应系统的后项渐进紧性的关键.
Under the light of a theory for the existence of backward compact pullback attractors, it is shown that the non-autonomous Kuramoto-Sivashinsky equation has a backward compact pullback attractor under an assumption of λ-tempered finiteness for the force. A backward uniform Gronwall lemma is essential for proving the backward asymptotical compactness of corresponding systems
[1] | CARVALHO A, LANGA J A, ROBINSON J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems[M]. New York: Springer, 2013: 182. |
[2] | CUI Hong-yong, LANGA J A, LI Yang-rong. Regularity and Structure of Pullback Attractors for Reaction-Diffusion Type Systems without Uniqueness[J]. Nonlinear Anal, 2016, 140: 208-235. DOI:10.1016/j.na.2016.03.012 |
[3] | TAN Jie, LI Yang-rong. Random Attractors of Kuramoto-Sivashinsky Equation with Multilicative White Noise[J]. 西南大学学报(自然科学版), 2011, 33(2): 121-125. |
[4] | LI Yang-rong, YIN Jin-yan. A Modiffed Proof of Pullback Attractors in a Sobolev Space for Atochastic Fitz Hugh-Nagumo Equations[J]. Disrete Contin Dyn Syst, 2016, 21: 1203-1223. DOI:10.3934/dcdsb |