%0 Journal Article %T 非自治的Kuramoto-Sivashinsky方程的拉回吸引子的后项紧性<br>Backward Compactness of Pullback Attractors for the Non-Autonomous Kuramoto-Sivashinsky Equation %A 范红瑞 %A 王仁海 %A 李扬荣 %A 佘连兵< %A br> %A FAN Hong-rui %A WANG Ren-hai %A LI Yang-rong %A SHE Lian-bin %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.03.014 %X 本文运用一个关于后项紧的拉回吸引子的存在性定理,证明了非自治的Kuramoto-Sivashinsky方程在外力项是后项<i>λ</i>-缓增有限的假设条件下存在一个唯一的后项紧的拉回吸引子.后项一致Gronwa引理是证明相应系统的后项渐进紧性的关键.<br>Under the light of a theory for the existence of backward compact pullback attractors, it is shown that the non-autonomous Kuramoto-Sivashinsky equation has a backward compact pullback attractor under an assumption of λ-tempered finiteness for the force. A backward uniform Gronwall lemma is essential for proving the backward asymptotical compactness of corresponding systems %K 非自治的Kuramoto-Sivashinsky方程 %K 拉回吸引子 %K 后项紧性 %K 非自治动力系统 %K 后项一致Gronwa引理< %K br> %K non-autonomous Kuramoto-Sivashinsky equation %K pullback attractor %K backward compactness %K non-autonomous dynamic system %K backward uniform Gronwall lemma %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/3/201803014.htm