|
- 2018
一类非局部近共振问题多重解的存在性
|
Abstract:
$通过变分方法在光滑有界域Ω上研究由常数a,b>0,参数λ>0及连续函数f(x,u)共同决定的非局部问题:$
\left\{ {\begin{array}{*{20}{c}}
\begin{array}{l}
- \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\
u = 0
\end{array}&\begin{array}{l}
x \in \mathit{\Omega }\\
x \in \partial \mathit{\Omega }
\end{array}
\end{array}} \right.
$
利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.$
$In this paper, we use the variational method to study the following nonlocal problems in the smooth bounded domain Ω, which are determined by the constant a, b > 0, the parameter λ > 0 and the continuous function f(x, u):
$
\left\{ {\begin{array}{*{20}{c}}
\begin{array}{l}
- \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\
u = 0
\end{array}&\begin{array}{l}
x \in \mathit{\Omega }\\
x \in \partial \mathit{\Omega }
\end{array}
\end{array}} \right.
$
The existence and multiple solutions are obtained for this class of problems with near resonance by the Ekeland variational principle and a mountain pass lemma.
[1] | 钟承奎, 范先令, 陈文山原. 非线性泛函分析引论[M]. 兰州: 兰州大学出版社: 189-193. |
[2] | 赵荣胜, 唐春雷. 一类Kirchhoff型方程解的多重性[J]. 西南大学学报(自然科学版), 2015, 37(2): 60-63. |
[3] | MAWHIN J, SCHMITT K. Nonlinear Eigenvalue Problems with the Parameter Near Resonance[J]. Annales Polonici Mathematici, 1990, 51(1): 172-189. |
[4] | AN Y C, LU X, SUO H M. Existence and Multiplicity Results for a Degenerate Quasi-Linear Elliptic System Near Resonance[J]. Boundary Value Problems, 2014, 184(1): 1-10. |
[5] | AN Y C, SUO H M. The Neumann Problem for a Degenerate Elliptic System Near Resonance[J]. Advances in Mathematical Physics, 2017, 2017(4): 1-10. |
[6] | YIN G S, LIU J S. Existence and Multiplicity of Nontrivial Solutions for a Nonlocal Problem[J]. Boundary Value Problems, 2015, 2015(1): 1-7. DOI:10.1186/s13661-014-0259-3 |
[7] | LEI C Y, LIAO J F, SUO H M. Multiple Positive Solutions for a Class of Nonlocal Problems Involving a Sign-Changing Potential[J]. Electronic Journal of Differential Equations, 2017, 2017(9): 1-8. |
[8] | 李红英. 一类非局部问题的多解性[J]. 西南师范大学学报(自然科学版), 2017, 42(6): 24-27. |
[9] | LEI C Y, CHU C M, SUO H M. Positive Solutions for a Nonlocal Problem with Singularity[J]. Electronic Journal of Differential Equations, 2017, 2017(85): 1-9. |
[10] | PERERA K, ZHANG Z T. Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index[J]. Journal of Differential Equations, 2006, 221(1): 246-255. DOI:10.1016/j.jde.2005.03.006 |
[11] | PUCCI P, SERRIN J. A Mountain Pass Theorem[J]. Journal of Differential Equations, 1985, 60(1): 142-149. DOI:10.1016/0022-0396(85)90125-1 |