全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类非局部近共振问题多重解的存在性
Existence of Multiple Solutions for a Class of Nonlocal Near Resonance Problems

DOI: 10.13718/j.cnki.xdzk.2018.04.009

Keywords: 非局部问题, 近共振, 变分方法, Ekeland变分原理, 多重解
nonlocal problem
, near resonance, variational method, Ekeland's variational principle, multiple solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

$通过变分方法在光滑有界域Ω上研究由常数ab>0,参数λ>0及连续函数f(xu)共同决定的非局部问题:$ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ 利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.$
$In this paper, we use the variational method to study the following nonlocal problems in the smooth bounded domain Ω, which are determined by the constant a, b > 0, the parameter λ > 0 and the continuous function f(x, u): $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ The existence and multiple solutions are obtained for this class of problems with near resonance by the Ekeland variational principle and a mountain pass lemma.

References

[1]  钟承奎, 范先令, 陈文山原. 非线性泛函分析引论[M]. 兰州: 兰州大学出版社: 189-193.
[2]  赵荣胜, 唐春雷. 一类Kirchhoff型方程解的多重性[J]. 西南大学学报(自然科学版), 2015, 37(2): 60-63.
[3]  MAWHIN J, SCHMITT K. Nonlinear Eigenvalue Problems with the Parameter Near Resonance[J]. Annales Polonici Mathematici, 1990, 51(1): 172-189.
[4]  AN Y C, LU X, SUO H M. Existence and Multiplicity Results for a Degenerate Quasi-Linear Elliptic System Near Resonance[J]. Boundary Value Problems, 2014, 184(1): 1-10.
[5]  AN Y C, SUO H M. The Neumann Problem for a Degenerate Elliptic System Near Resonance[J]. Advances in Mathematical Physics, 2017, 2017(4): 1-10.
[6]  YIN G S, LIU J S. Existence and Multiplicity of Nontrivial Solutions for a Nonlocal Problem[J]. Boundary Value Problems, 2015, 2015(1): 1-7. DOI:10.1186/s13661-014-0259-3
[7]  LEI C Y, LIAO J F, SUO H M. Multiple Positive Solutions for a Class of Nonlocal Problems Involving a Sign-Changing Potential[J]. Electronic Journal of Differential Equations, 2017, 2017(9): 1-8.
[8]  李红英. 一类非局部问题的多解性[J]. 西南师范大学学报(自然科学版), 2017, 42(6): 24-27.
[9]  LEI C Y, CHU C M, SUO H M. Positive Solutions for a Nonlocal Problem with Singularity[J]. Electronic Journal of Differential Equations, 2017, 2017(85): 1-9.
[10]  PERERA K, ZHANG Z T. Nontrivial Solutions of Kirchhoff-Type Problems via the Yang Index[J]. Journal of Differential Equations, 2006, 221(1): 246-255. DOI:10.1016/j.jde.2005.03.006
[11]  PUCCI P, SERRIN J. A Mountain Pass Theorem[J]. Journal of Differential Equations, 1985, 60(1): 142-149. DOI:10.1016/0022-0396(85)90125-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133