%0 Journal Article %T 一类非局部近共振问题多重解的存在性<br>Existence of Multiple Solutions for a Class of Nonlocal Near Resonance Problems %A 王跃 %A 梁金平 %A 索洪敏< %A br> %A WANG Yue %A LIANG Jin-ping %A SUO Hong-min %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.04.009 %X $通过变分方法在光滑有界域<i>Ω</i>上研究由常数<i>a</i>,<i>b</i>>0,参数<i>λ</i>>0及连续函数<i>f</i>(<i>x</i>,<i>u</i>)共同决定的非局部问题:$ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ 利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.$<br>$In this paper, we use the variational method to study the following nonlocal problems in the smooth bounded domain <i>Ω</i>, which are determined by the constant <i>a</i>, <i>b</i> > 0, the parameter <i>λ</i> > 0 and the continuous function <i>f</i>(<i>x</i>, <i>u</i>): $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u + b\lambda {u^3} = f\left( {x,u} \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ The existence and multiple solutions are obtained for this class of problems with near resonance by the Ekeland variational principle and a mountain pass lemma. %K 非局部问题 %K 近共振 %K 变分方法 %K Ekeland变分原理 %K 多重解< %K br> %K nonlocal problem %K near resonance %K variational method %K Ekeland's variational principle %K multiple solution %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/4/201804009.htm