|
- 2018
一类多目标优化问题弱有效解的必要最优性条件
|
Abstract:
标量化方法是研究多目标优化问题的最优性条件与算法的重要手段,最优性理论是优化理论的重要研究内容之一.建立了一类标量化函数的相关性质,并借助标量化技巧与Clarke次微分,在假设次微分约束规格成立的条件下,建立了一类非光滑多目标优化问题的局部弱有效解的Karush-Kuhn-Tucker必要最优性条件.
The scalarization method is an important means for the study of optimality and algorithms of multi-objective optimization problems, and optimality theory is one of the important contents in the optimization theory. In this paper, we first establish some properties of a class of scalarization functions. Then, with the scalarization method and Clarke subdifferentials, we establish the Karush-Kuhn-Tucker necessary optimality conditions for the local weakly efficient solution of a nonsmooth constrained multi-objective optimization problem under the assumption of subdifferential constraint qualification
[1] | 赵克全, 戎卫东, 杨新民. 新的非线性分离定理及其在向量优化中的应用[J]. 中国科学(数学), 2017, 47(4): 533-544. |
[2] | JOURANI A, THIBAULT L. Approximations and Metric Regularity in Mathematical Programming in Banach Spaces[J]. Math Oper Res, 1993, 18(2): 390-401. DOI:10.1287/moor.18.2.390 |
[3] | JOURANI A. Constraint Qualifications and Lagrange Multipliers in Nondifferentiable Programming Problems[J]. J Optim Theory Appl, 1994, 81(3): 533-548. DOI:10.1007/BF02193099 |
[4] | 陈加伟, 李军, 王景南. 锥约束非光滑多目标优化问题的对偶及最优性条件[J]. 数学物理学报, 2012, 32(1): 1-12. DOI:10.3969/j.issn.1003-3998.2012.01.001 |
[5] | JEYAKUMAR V, LUC D T. Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators[J]. J Optim Theory Appl, 1999, 101(3): 599-621. DOI:10.1023/A:1021790120780 |
[6] | MICHEL P, PENOT J P. Calcul Sous-Différentiel Pour Des Fonctions Lipschitziennes et Nonlipschitziennes[J]. C R Math Acad Sci, 1984, 298(12): 269-272. |
[7] | MORDUKHOVICH B S, SHAO Y. On Nonconvex Subdifferential Calculus in Banach Spaces[J]. J Convex Anal, 1995(2): 211-227. |
[8] | 欧小庆, 李金富, 刘佳, 等. 一类约束多目标优化问题弱有效解的一个择一定理[J]. 西南大学学报(自然科学版), 2017, 39(1): 109-113. |
[9] | GONG X H. Scalarization and Optimality Conditions for Vector Equilibrium Problems[J]. Nonlinear Anal, 2010, 73(11): 3598-3612. DOI:10.1016/j.na.2010.07.041 |
[10] | 周志昂. 强G-预不变凸向量优化问题的最优性条件[J]. 西南大学学报(自然科学版), 2013, 35(1): 65-68. |
[11] | CHEN J W, CHO Y J, KIM J, et al. Multiobjective Optimization Problems with Modified Objective Functions and Cone Constraints and Applications[J]. J Glob Optim, 2011, 49(1): 137-147. DOI:10.1007/s10898-010-9539-3 |
[12] | CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: Wiley Interscience, 1983. |
[13] | KHAN A A, TAMMER C, ZALINESCU C. Set-valued Optimization:An Introduction with Applications[M]. Berlin: Springer, 2015. |