全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类多目标优化问题弱有效解的必要最优性条件
Necessary Optimality Conditions for a Class of Nonsmooth Constrained Multiobjective Optimization Problems

DOI: 10.13718/j.cnki.xdzk.2018.10.018

Keywords: 多目标优化, 局部弱有效解, 必要最优性条件, 约束规格
multiobjective optimization
, local weakly efficient solution, necessary optimality condition, constraint qualification

Full-Text   Cite this paper   Add to My Lib

Abstract:

标量化方法是研究多目标优化问题的最优性条件与算法的重要手段,最优性理论是优化理论的重要研究内容之一.建立了一类标量化函数的相关性质,并借助标量化技巧与Clarke次微分,在假设次微分约束规格成立的条件下,建立了一类非光滑多目标优化问题的局部弱有效解的Karush-Kuhn-Tucker必要最优性条件.
The scalarization method is an important means for the study of optimality and algorithms of multi-objective optimization problems, and optimality theory is one of the important contents in the optimization theory. In this paper, we first establish some properties of a class of scalarization functions. Then, with the scalarization method and Clarke subdifferentials, we establish the Karush-Kuhn-Tucker necessary optimality conditions for the local weakly efficient solution of a nonsmooth constrained multi-objective optimization problem under the assumption of subdifferential constraint qualification

References

[1]  赵克全, 戎卫东, 杨新民. 新的非线性分离定理及其在向量优化中的应用[J]. 中国科学(数学), 2017, 47(4): 533-544.
[2]  JOURANI A, THIBAULT L. Approximations and Metric Regularity in Mathematical Programming in Banach Spaces[J]. Math Oper Res, 1993, 18(2): 390-401. DOI:10.1287/moor.18.2.390
[3]  JOURANI A. Constraint Qualifications and Lagrange Multipliers in Nondifferentiable Programming Problems[J]. J Optim Theory Appl, 1994, 81(3): 533-548. DOI:10.1007/BF02193099
[4]  陈加伟, 李军, 王景南. 锥约束非光滑多目标优化问题的对偶及最优性条件[J]. 数学物理学报, 2012, 32(1): 1-12. DOI:10.3969/j.issn.1003-3998.2012.01.001
[5]  JEYAKUMAR V, LUC D T. Nonsmooth Calculus, Minimality, and Monotonicity of Convexificators[J]. J Optim Theory Appl, 1999, 101(3): 599-621. DOI:10.1023/A:1021790120780
[6]  MICHEL P, PENOT J P. Calcul Sous-Différentiel Pour Des Fonctions Lipschitziennes et Nonlipschitziennes[J]. C R Math Acad Sci, 1984, 298(12): 269-272.
[7]  MORDUKHOVICH B S, SHAO Y. On Nonconvex Subdifferential Calculus in Banach Spaces[J]. J Convex Anal, 1995(2): 211-227.
[8]  欧小庆, 李金富, 刘佳, 等. 一类约束多目标优化问题弱有效解的一个择一定理[J]. 西南大学学报(自然科学版), 2017, 39(1): 109-113.
[9]  GONG X H. Scalarization and Optimality Conditions for Vector Equilibrium Problems[J]. Nonlinear Anal, 2010, 73(11): 3598-3612. DOI:10.1016/j.na.2010.07.041
[10]  周志昂. 强G-预不变凸向量优化问题的最优性条件[J]. 西南大学学报(自然科学版), 2013, 35(1): 65-68.
[11]  CHEN J W, CHO Y J, KIM J, et al. Multiobjective Optimization Problems with Modified Objective Functions and Cone Constraints and Applications[J]. J Glob Optim, 2011, 49(1): 137-147. DOI:10.1007/s10898-010-9539-3
[12]  CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: Wiley Interscience, 1983.
[13]  KHAN A A, TAMMER C, ZALINESCU C. Set-valued Optimization:An Introduction with Applications[M]. Berlin: Springer, 2015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133