%0 Journal Article %T 一类多目标优化问题弱有效解的必要最优性条件<br>Necessary Optimality Conditions for a Class of Nonsmooth Constrained Multiobjective Optimization Problems %A 欧小庆 %A 李金富 %A 刘佳 %A 廖霞 %A 陈加伟< %A br> %A OU Xiao-qing %A LI Jin-fu %A LIU Jia %A LIAO Xia %A CHEN Jia-wei %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.10.018 %X 标量化方法是研究多目标优化问题的最优性条件与算法的重要手段,最优性理论是优化理论的重要研究内容之一.建立了一类标量化函数的相关性质,并借助标量化技巧与Clarke次微分,在假设次微分约束规格成立的条件下,建立了一类非光滑多目标优化问题的局部弱有效解的Karush-Kuhn-Tucker必要最优性条件.<br>The scalarization method is an important means for the study of optimality and algorithms of multi-objective optimization problems, and optimality theory is one of the important contents in the optimization theory. In this paper, we first establish some properties of a class of scalarization functions. Then, with the scalarization method and Clarke subdifferentials, we establish the Karush-Kuhn-Tucker necessary optimality conditions for the local weakly efficient solution of a nonsmooth constrained multi-objective optimization problem under the assumption of subdifferential constraint qualification %K 多目标优化 %K 局部弱有效解 %K 必要最优性条件 %K 约束规格< %K br> %K multiobjective optimization %K local weakly efficient solution %K necessary optimality condition %K constraint qualification %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/10/20181018.htm