|
- 2018
一类非局部问题解的存在性与多重性
|
Abstract:
$考虑一类非局部问题
$
\left\{ {\begin{array}{*{20}{c}}
\begin{array}{l}
- \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\
u = 0
\end{array}&\begin{array}{l}
x \in \mathit{\Omega }\\
x \in \partial \mathit{\Omega }
\end{array}
\end{array}} \right.
$
其中a>0,b>0,
$Consider a class of nonlocal problems
$
\left\{ {\begin{array}{*{20}{c}}
\begin{array}{l}
- \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\
u = 0
\end{array}&\begin{array}{l}
x \in \mathit{\Omega }\\
x \in \partial \mathit{\Omega }
\end{array}
\end{array}} \right.
$
where a > 0, b > 0,
[1] | YIN G S, LIU J S. Existence and Multiplicity of Nontrivial Solutions for a Nonlocal Problem[J]. Bound Value Probl, 2015(1): 1-7. |
[2] | WILLEM M. Minimax Theorems[M]. Boston: Birkh?user, 1996. |
[3] | LEI C Y, LIAO J F, SUO H M. Multiple Positive Solutions for Nonlocal Problems Involving a Sign-Changing Potential[J]. Electron J Differential Equations, 2017(9): 1-8. |
[4] | 赵荣胜, 唐春雷. 一类Kirchhoff型方程解的多重性[J]. 西南大学学报(自然科学版), 2015, 37(2): 60-63. |
[5] | 刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59. |
[6] | AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Points Theory and Applications[J]. J Funct Anal, 1973(14): 349-381. |
[7] | LEI C Y, CHU C M, SUO H M. Positive Solutions for a Nonlocal Problem with Singularity[J]. Electron J Differential Equations, 2017, 85: 1-9. |
[8] | DUAN Y, SUN X, LI H Y. Existence and Multiplicity of Positive Solutions for a Nonlocal Problem[J]. J Nonlinear Sci Appl, 2017(10): 6056-6061. |
[9] | MA T F. Remarks on an Elliptic Equation of Kirchhoff Type[J]. Nonlinear Anal, 2005, 63(5): 1967-1977. |
[10] | SUN J J, TANG C L. Resonance Problems for Kirchhoff Type Equations[J]. Discrete Contin Dyn Syst, 2017, 33(5): 2139-2154. |