全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类非局部问题解的存在性与多重性
Existence and Multiplicity of Solutions for a Class of Nonlocal Problems

DOI: 10.13718/j.cnki.xdzk.2018.04.008

Keywords: 非局部问题, Ekeland变分原理, 山路引理, (PS)c条件
nonlocal problems
, Ekeland's variational principle, Mountain pass lemma, the (PS)c condition

Full-Text   Cite this paper   Add to My Lib

Abstract:

$考虑一类非局部问题 $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ 其中a>0,b>0,$ \mathit{\Omega } \subset {{\mathbb{R}}^N} $是有界开集,λ>0且gH-1(Ω)\{0},这里H-1(Ω)是Sobolev空间H01(Ω)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在λ*>0,使得:(ⅰ)当λ∈(0,λ*)时,该非局部问题至少有3个不同的解;(ⅱ)当λ=λ*时,该非局部问题至少有2个不同的解;(ⅲ)当λλ*时,该非局部问题至少有1个解.$
$Consider a class of nonlocal problems $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ where a > 0, b > 0, $ \mathit{\Omega } \subset {{\mathbb{R}}^N} $ is a bounded open set, λ > 0 and gH-1(Ω)\{0}. The Ekeland's variational principle and the mountain pass lemma are applied to proved that there exists λ* > 0 such that (ⅰ)The problem has at least three solutions if λ∈(0, λ*); (ⅱ)The problem has at least two solutions if λ=λ*; (ⅲ)The problem has at least one solution if λ > λ*.

References

[1]  YIN G S, LIU J S. Existence and Multiplicity of Nontrivial Solutions for a Nonlocal Problem[J]. Bound Value Probl, 2015(1): 1-7.
[2]  WILLEM M. Minimax Theorems[M]. Boston: Birkh?user, 1996.
[3]  LEI C Y, LIAO J F, SUO H M. Multiple Positive Solutions for Nonlocal Problems Involving a Sign-Changing Potential[J]. Electron J Differential Equations, 2017(9): 1-8.
[4]  赵荣胜, 唐春雷. 一类Kirchhoff型方程解的多重性[J]. 西南大学学报(自然科学版), 2015, 37(2): 60-63.
[5]  刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59.
[6]  AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Points Theory and Applications[J]. J Funct Anal, 1973(14): 349-381.
[7]  LEI C Y, CHU C M, SUO H M. Positive Solutions for a Nonlocal Problem with Singularity[J]. Electron J Differential Equations, 2017, 85: 1-9.
[8]  DUAN Y, SUN X, LI H Y. Existence and Multiplicity of Positive Solutions for a Nonlocal Problem[J]. J Nonlinear Sci Appl, 2017(10): 6056-6061.
[9]  MA T F. Remarks on an Elliptic Equation of Kirchhoff Type[J]. Nonlinear Anal, 2005, 63(5): 1967-1977.
[10]  SUN J J, TANG C L. Resonance Problems for Kirchhoff Type Equations[J]. Discrete Contin Dyn Syst, 2017, 33(5): 2139-2154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133