%0 Journal Article %T 一类非局部问题解的存在性与多重性<br>Existence and Multiplicity of Solutions for a Class of Nonlocal Problems %A 唐之韵 %A 欧增奇< %A br> %A TANG Zhi-yun %A OU Zeng-qi %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.04.008 %X $考虑一类非局部问题 $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ 其中<i>a</i>>0,<i>b</i>>0,<inline-formula>$ \mathit{\Omega } \subset {{\mathbb{R}}^N} $</inline-formula>是有界开集,<i>λ</i>>0且<i>g</i>∈<i>H</i><sup>-1</sup>(<i>Ω</i>)\{0},这里<i>H</i><sup>-1</sup>(<i>Ω</i>)是Sobolev空间<i>H</i><sub>0</sub><sup>1</sup>(<i>Ω</i>)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在<i>λ</i><sub>*</sub>>0,使得:(ⅰ)当<i>λ</i>∈(0,<i>λ</i><sub>*</sub>)时,该非局部问题至少有3个不同的解;(ⅱ)当<i>λ</i>=<i>λ</i><sub>*</sub>时,该非局部问题至少有2个不同的解;(ⅲ)当<i>λ</i>><i>λ</i><sub>*</sub>时,该非局部问题至少有1个解.$<br>$Consider a class of nonlocal problems $ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} - \left( {a - b\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = \lambda g\left( x \right)\\ u = 0 \end{array}&\begin{array}{l} x \in \mathit{\Omega }\\ x \in \partial \mathit{\Omega } \end{array} \end{array}} \right. $ where <i>a</i> > 0, <i>b</i> > 0, <inline-formula>$ \mathit{\Omega } \subset {{\mathbb{R}}^N} $</inline-formula> is a bounded open set, <i>λ</i> > 0 and <i>g</i>∈<i>H</i><sup>-1</sup>(<i>Ω</i>)\{0}. The Ekeland's variational principle and the mountain pass lemma are applied to proved that there exists <i>λ</i><sub>*</sub> > 0 such that (ⅰ)The problem has at least three solutions if <i>λ</i>∈(0, <i>λ</i><sub>*</sub>); (ⅱ)The problem has at least two solutions if <i>λ</i>=<i>λ</i><sub>*</sub>; (ⅲ)The problem has at least one solution if <i>λ</i> > <i>λ</i><sub>*</sub>. %K 非局部问题 %K Ekeland变分原理 %K 山路引理 %K (PS)< %K sub> %K < %K i> %K c< %K /i> %K < %K /sub> %K 条件< %K br> %K nonlocal problems %K Ekeland's variational principle %K Mountain pass lemma %K the (PS)< %K sub> %K < %K i> %K c< %K /i> %K < %K /sub> %K condition %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/4/201804008.htm