|
- 2017
具有开放骨架双核锌羧酸配合物的设计合成与结构表征
|
Abstract:
选择含氮的有机羧酸配体1,3-di(3',5'-dicarboxylphenyl)pyridine(C21H13NO8,H4L),与过渡金属锌在DMA/CH3CN/H2O的混合溶剂热体系中配位组装,合成了一例具有3D开放骨架结构的双核锌金属羧酸配位化合物——Zn2(C21H9NO8)(H2O) (配合物1).用单晶X-射线衍射分析确定了其晶体学结构,配合物1结晶在正交晶系,P212121空间群(No.19);有机羧酸衍生物配体H4L结构中的羧酸氧原子与金属锌螯合配位形成1个双核锌的次级结构单元,再通过有机配体的配位作用连接形成配合物1的三维开放骨架结构,沿y轴方向具有空旷的孔道结构.
The construction, crystal structure and properties of multinuclear metal carboxylate frameworks and their potential applications have attracted considerable attention worldwide. In this study, a novel open-framework binuclear zinc carboxylate, Zn2(C21H9NO8)(H2O) (compound 1), was constructed from 1, 3-di(3', 5'-dicarboxylphenyl)pyridine (H4L) with the transition metal zinc under DMA/CH3CN/H2O mixed solvothermal conditions. Single-crystal X-ray diffraction analysis revealed that compound 1 crystallized in the orthorhombic space group P212121 (No.19). The oxygen atoms in carboxylate chelated with Zn to form a secondary building unit (SBU) featuring binuclear zinc, and these SBUs were constructed by H4L further into the open-frameworks of compound 1 featuring extra-large channels along y axis
[1] | LI M, LI D, O'KEEFFE M, et al. Topological Analysis of Metal-Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle[J]. Chem Rev, 2013, 114(2): 1343-1370. |
[2] | WANG S, ZHAO T, LI G H, et al. From Metal-Organic Squares to Porous Zeolite-Like Supramolecular Assemblies[J]. J Am Chem Soc, 2010, 132(51): 18038-18041. DOI:10.1021/ja109980c |
[3] | ZHOU H C, LONG J R, YAGHI O M. Introduction to Metal-Organic Frameworks[J]. Chem Rev, 2012, 112(2): 673-674. DOI:10.1021/cr300014x |
[4] | EDDAOUDI M, MOLER D B, LI H L, et al. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. Acc Chem Res, 2001, 34(4): 319-330. DOI:10.1021/ar000034b |
[5] | YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular Synthesis and the Design of New Materials[J]. Nature, 2003, 423(12): 705-714. |
[6] | 董淼, 董文飞, 黄玉明, 等. 金属有机框架NH2-MIL-88增强过氧化氢氧化鲁米诺化学发光法检测过氧化氢[J]. 西南大学学报(自然科学版), 2017, 39(3): 134-136. |
[7] | PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Acc Chem Res, 2010, 43(1): 58-67. DOI:10.1021/ar900116g |
[8] | LIU Y L, KRAVTSOV V C, LARSEN R, et al. Molecular Building Blocks Approach to the Assembly of Zeolite-Like Metal-Organic Frameworks (ZMOFs) with Extra-Large Cavities[J]. Chem Commun, 2006(14): 1488-1490. DOI:10.1039/b600188m |
[9] | CADIAU A, BELMABKHOUT Y, ADIL K, et al. Hydrolytically Stable Fluorinated Metal-Organic Frameworks for Energy-Efficient Dehydration [J]. 2017, 356(6339): 731-735. http://www.ncbi.nlm.nih.gov/pubmed/28522529 |
[10] | 李会端. 开放骨架稀土羧酸配合物的合成与结构表征[J]. 西南师范大学学报(自然科学版), 2014, 39(9): 21-25. |
[11] | WANG D M, ZHAO T, CAO Y, et al. High Performance Gas Adsorption and Separation of Natural Gas in Two Microporous Metal-Organic Frameworks with Ternary Building Units[J]. Chem Commun, 2014, 50(63): 8648-8650. DOI:10.1039/C4CC03729D |
[12] | WANG J, LUO J H, ZHAO J, et al. Assembly of Two Chiral Flexible Metal-Organic Frameworks with Stepwise Gas Adsorption and Highly Selective CO2 Adsorption[J]. Cryst Growth Des, 2014, 14(5): 2375-2380. DOI:10.1021/cg500091k |
[13] | WANG J, LUO J H, LUO X L, et al. Assembly of a Three-Dimensional Metal-Organic Framework with Copper (Ⅰ) Iodide and 4-(Pyrimidin-5-yl) Benzoic Acid: Controlled Uptake and Release of Iodine[J]. Cryst Growth Des, 2015, 15(2): 915-920. DOI:10.1021/cg501730q |
[14] | TANABEA K K, COHEN S M. a Postsynthetic Modification of Metal-Organic Frameworks-a Progress Report[J]. Chem Soc Rev, 2011, 40(2): 498-519. DOI:10.1039/C0CS00031K |
[15] | COHEN S M. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks[J]. Chem Rev, 2012, 112(2): 970-1000. DOI:10.1021/cr200179u |