全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

黎曼流形上p-Laplace算子的Liouville定理
A Liouville Theorem of the p-Laplace Operator on Riemannian Manifolds

DOI: 10.13718/j.cnki.xdzk.2017.10.009

Keywords: 黎曼流形, 体积增长, Liouville定理, 微分不等式
Riemannian manifold
, volume growth, Liouville theorem, differential inequality

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究非紧黎曼流形上微分不等式Δpu+uσ≤0的Liouville定理,其中1<p ≤ 2,σ > p-1,证明了当积分条件$\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r < \infty $成立时上面不等式不存在弱意义下的非平凡的非负解.
In this paper we study the Liouville theorem of the differential inequality Δpu+uσ ≤ 0 on complete noncompact Riemannian manifolds, where 1 < p ≤ 2, σ > p-1. We prove that the above inequality does not exist nontrivial nonnegative solutions in the weak sense if the integral condition $\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r < \infty $ satisfies

References

[1]  GIDSA B, SPRUCK J. Global and Local Behavior of Positive Solutions of Nonlinear Elliptic Equations[J]. Communications on Pure and Applied Mathematics, 1981, 34(4): 525-598. DOI:10.1002/(ISSN)1097-0312
[2]  GRIGOR'YAN A, KONDRATIEV V. A. On the Existence of Positive Solutions of Semilinear Elliptic Inequalities on Riemannian Manifolds[J]. New York:Springer, 2010.
[3]  GRIGOR'YAN A, SUN Y. On Nonnegative Solutions of the Inequality Δu+uσ ≤ 0 on Riemnannian Manifolds[J]. Communications on Pure and Applied Mathematics, 2014, 67(8): 1336-1352. DOI:10.1002/cpa.v67.8
[4]  CARISTI G, MITIDIERI E. Some Liouville Theorems for Quasilinear Elliptic Inequalities[J]. Doklady Mathematics, 2009, 79(1): 118-124. DOI:10.1134/S1064562409010360
[5]  GRIGOR'YAN A A. On the Existence of Positive Fundamental Solution of the Laplace Equation on Riemannian Manifolds (in Russian)[J]. Engl. transl.:Mathematics of the USSR, 1987, 56(2): 349-358. DOI:10.1070/SM1987v056n02ABEH003040
[6]  CARISTI G, AMBROSIO L. D, MITIDIERI E. Liouville Theorems for Some Nonlinear Inequalities[J]. Proceedings of the Steklov Institute of Mathematics, 2008, 260(1): 90-111. DOI:10.1134/S0081543808010070
[7]  HEIN B. A Homotopy Approach to Solving the Inverse Mean Curvature Flow[J]. Calculus of Variations and Partial Differential Equations, 2007, 28(2): 249-273.
[8]  ZHANG H C. A Note on Liouville Type Theorem of Elliptic Inequality Δu+uσ ≤ 0 on Riemannian Manifolds[J]. Potential Analysis, 2015, 43(2): 269-276. DOI:10.1007/s11118-015-9470-9
[9]  KOTSCHWAR B, NI L. Local Gradient Estimates of p-harmonic Functions, 1/H-Flow, and an Entropy Formula[J]. Annales Scientifiques de l'Ecole Normale Suprieure, 2009, 42(4): 1-36.
[10]  VAROPOULOS N. The Poisson Kernel on Positively Curved Manifolds[J]. Journal of Functional Analysis, 1981, 44(3): 359-380. DOI:10.1016/0022-1236(81)90015-X
[11]  GILBARG D, TRUDINGER N. S. Elliptic Partial Differential Equations of Second Order[M]. New York: Springer, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133