|
- 2017
黎曼流形上p-Laplace算子的Liouville定理
|
Abstract:
主要研究非紧黎曼流形上微分不等式Δpu+uσ≤0的Liouville定理,其中1<p ≤ 2,σ > p-1,证明了当积分条件
In this paper we study the Liouville theorem of the differential inequality Δpu+uσ ≤ 0 on complete noncompact Riemannian manifolds, where 1 < p ≤ 2, σ > p-1. We prove that the above inequality does not exist nontrivial nonnegative solutions in the weak sense if the integral condition
[1] | GIDSA B, SPRUCK J. Global and Local Behavior of Positive Solutions of Nonlinear Elliptic Equations[J]. Communications on Pure and Applied Mathematics, 1981, 34(4): 525-598. DOI:10.1002/(ISSN)1097-0312 |
[2] | GRIGOR'YAN A, KONDRATIEV V. A. On the Existence of Positive Solutions of Semilinear Elliptic Inequalities on Riemannian Manifolds[J]. New York:Springer, 2010. |
[3] | GRIGOR'YAN A, SUN Y. On Nonnegative Solutions of the Inequality Δu+uσ ≤ 0 on Riemnannian Manifolds[J]. Communications on Pure and Applied Mathematics, 2014, 67(8): 1336-1352. DOI:10.1002/cpa.v67.8 |
[4] | CARISTI G, MITIDIERI E. Some Liouville Theorems for Quasilinear Elliptic Inequalities[J]. Doklady Mathematics, 2009, 79(1): 118-124. DOI:10.1134/S1064562409010360 |
[5] | GRIGOR'YAN A A. On the Existence of Positive Fundamental Solution of the Laplace Equation on Riemannian Manifolds (in Russian)[J]. Engl. transl.:Mathematics of the USSR, 1987, 56(2): 349-358. DOI:10.1070/SM1987v056n02ABEH003040 |
[6] | CARISTI G, AMBROSIO L. D, MITIDIERI E. Liouville Theorems for Some Nonlinear Inequalities[J]. Proceedings of the Steklov Institute of Mathematics, 2008, 260(1): 90-111. DOI:10.1134/S0081543808010070 |
[7] | HEIN B. A Homotopy Approach to Solving the Inverse Mean Curvature Flow[J]. Calculus of Variations and Partial Differential Equations, 2007, 28(2): 249-273. |
[8] | ZHANG H C. A Note on Liouville Type Theorem of Elliptic Inequality Δu+uσ ≤ 0 on Riemannian Manifolds[J]. Potential Analysis, 2015, 43(2): 269-276. DOI:10.1007/s11118-015-9470-9 |
[9] | KOTSCHWAR B, NI L. Local Gradient Estimates of p-harmonic Functions, 1/H-Flow, and an Entropy Formula[J]. Annales Scientifiques de l'Ecole Normale Suprieure, 2009, 42(4): 1-36. |
[10] | VAROPOULOS N. The Poisson Kernel on Positively Curved Manifolds[J]. Journal of Functional Analysis, 1981, 44(3): 359-380. DOI:10.1016/0022-1236(81)90015-X |
[11] | GILBARG D, TRUDINGER N. S. Elliptic Partial Differential Equations of Second Order[M]. New York: Springer, 1998. |