%0 Journal Article %T 黎曼流形上<i>p</i>-Laplace算子的Liouville定理<br>A Liouville Theorem of the <i>p</i>-Laplace Operator on Riemannian Manifolds %A 周俞洁 %A 张泽宇 %A 王林峰< %A br> %A ZHOU Yu-jie %A ZHANG Ze-yu %A WANG Lin-feng %J 西南大学学报(自然科学版) %D 2017 %R 10.13718/j.cnki.xdzk.2017.10.009 %X 主要研究非紧黎曼流形上微分不等式Δ<sub><i>p</i></sub><i>u</i>+<i>u</i><sup><i>σ</i></sup>≤0的Liouville定理,其中1<<i>p</i> ≤ 2,<i>σ</i> > <i>p</i>-1,证明了当积分条件<inline-formula>$\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r < \infty $</inline-formula>成立时上面不等式不存在弱意义下的非平凡的非负解.<br>In this paper we study the Liouville theorem of the differential inequality Δ<sub><i>p</i></sub><i>u</i>+<i>u</i><sup><i>σ</i></sup> ≤ 0 on complete noncompact Riemannian manifolds, where 1 < <i>p</i> ≤ 2, <i>σ</i> > <i>p</i>-1. We prove that the above inequality does not exist nontrivial nonnegative solutions in the weak sense if the integral condition <inline-formula>$\mathop {\lim {\rm{inf}}}\limits_{t \searrow 0} {t^{\frac{\sigma }{{\sigma - p + 1}}}}\int_1^\infty {\frac{{\mu \left( {{B_r}} \right)}}{{{r^{\frac{{\sigma \left( {p + 1} \right) - \left( {p - 1} \right)}}{{\sigma - p + 1}} + t}}}}} {\rm{d}}r < \infty $</inline-formula> satisfies %K 黎曼流形 %K 体积增长 %K Liouville定理 %K 微分不等式< %K br> %K Riemannian manifold %K volume growth %K Liouville theorem %K differential inequality %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2017/10/201710009.htm