|
- 2018
碲化镉量子点与朊蛋白相互作用研究
|
Abstract:
碲化镉量子点(CdTe QDs)与重组型朊蛋白(rPrP)相互作用时,rPrP会诱导CdTe QDs发生聚集,引起CdTe QDs荧光显微镜成像、紫外-可见吸收光谱和荧光光谱发生改变.而CdTe QDs会加速rPrP纤维化,引起硫磺素T(ThT)荧光明显增强和刚果红(Congo Red)紫外-可见吸收光谱红移.
When CdTe QDs interact with rPrP, the latter will induce CdTe QDs aggregates, thus resulting in changes of CdTe QDs fluorescent microscopic imaging, UV-Vis absorption spectra and fluorescence spectra. Meanwhile, CdTe QDs can accelerate rPrP fibrosis, causing obvious enhancement of thioflavine T fluorescence and inducing a red shift of the Congo Red UV-Vis absorption spectra
[1] | AGUZZI A, O'CONNOR T. Protein Aggregation Diseases: Pathogenicity and Therapeutic Perspectives[J]. Nature Reviews Drug Discovery, 2010, 9(3): 237-248. DOI:10.1038/nrd3050 |
[2] | MOORE R A, TAUBNER L M, PRIOLA S A. Prion Protein Misfolding and Disease[J]. Current Opinion in Structural Biology, 2009, 19(1): 14-22. DOI:10.1016/j.sbi.2008.12.007 |
[3] | MIURA T, YAMAMIYA C, SASAKI M, et al. Binding Mode of Congo Red to Alzheimer's Amyloid β-Peptide Studied by UV Raman Spectroscopy[J]. J Raman Spectrosc, 2002, 33(7): 530-535. DOI:10.1002/(ISSN)1097-4555 |
[4] | PIHLASALO S, KIRJAVAINEN J, HANNINEN P, et al. High Sensitivity Luminescence Nanoparticle Assay for the Detection of Protein Aggregation[J]. Anal Chem, 2011, 83(4): 1163-1166. DOI:10.1021/ac1026385 |
[5] | SOTO C, SABORIO G P. Prions: Disease Propagation and Disease Therapy by Conformational Transmission[J]. Trends Molecular Medicine, 2001, 7(3): 109-114. DOI:10.1016/S1471-4914(01)01931-1 |
[6] | COLVIN V L, KULINOWSKI K M. Nanoparticles as Catalysts for Protein Fibrillation[J]. Proc Natl Acad Sci U S A, 2007, 104(21): 8679-8680. DOI:10.1073/pnas.0703194104 |
[7] | 杨利利, 郝建玉, 郑鹄志, 等. CdSe/ZnS核壳型量子点标记朊蛋白的研究[J]. 西南大学学报(自然科学版), 2016, 38(5): 76-79. |
[8] | VANIK D L, SUREWICZ W K. Disease-Associated F198S Mutation Increases the Propensity of the Recombinant Prion Protein for Conformational Conversion to Scrapie-Like Form[J]. J Biol Chem, 2002, 277(50): 49065-49070. DOI:10.1074/jbc.M207511200 |
[9] | CAO M, CAO C, LIU M G, et al. Selective Fluorometry of Cytochrome C Using Glutathione-Capped CdTe Quantum Dots in Weakly Basic Medium[J]. Microchim Acta, 2009, 165: 341-346. DOI:10.1007/s00604-009-0140-8 |
[10] | WU W H, SUN X, YU Y P, et al. TiO2 Nanoparticles Promote β-Amyloid Fibrillation in Vitro[J]. Biochem Biophys Res Commun, 2008, 373(2): 315-318. DOI:10.1016/j.bbrc.2008.06.035 |
[11] | KUANG H, ZHAO Y, MA W, et al. Recent Developments in Analytical Applications of Quantum Dots[J]. Trends in Analytical Chemistry, 2011, 30(10): 1620-1636. DOI:10.1016/j.trac.2011.04.022 |
[12] | H?RM? H, PIHLASALO S, CYWINSKI P J, et al. Protein Quantification Using Resonance Energy Transfer between Donor Nanoparticles and Acceptor Quantum Dots[J]. Anal Chem, 2013, 85(5): 2921-2926. DOI:10.1021/ac303586n |
[13] | ZHANG P F, LIU S H, GAO D Y, et al. Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging[J]. J Am Chem Soc, 2012, 134(20): 8388-8391. DOI:10.1021/ja302367s |
[14] | 杨文雨, 罗凡雨, 朱姗姗, 等. 以葡萄糖为碳源的荧光碳点构建Hg2+的检测方法[J]. 西南师范大学学报(自然科学版), 2014, 39(10): 81-86. |
[15] | ROACH P, FARRAR D, PERRY C C. Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry[J]. J Am Chem Soc, 2006, 128(12): 3939-3945. DOI:10.1021/ja056278e |
[16] | LUNDQVIST M, SETHSON I, JONSSON B H. High-Resolution 2D 1H—15N NMR Characterization of Persistent Structural Alterations of Proteins Induced by Interactions with Silica Nanoparticles[J]. Langmuir, 2005, 21(13): 5974-5979. |
[17] | JAIN S, UDGAONKAR J B. Evidence for Stepwise Formation of Amyloid Fibrils by the Mouse Prion Protein[J]. J Mol Biol, 2008, 382(5): 1228-1241. DOI:10.1016/j.jmb.2008.07.052 |
[18] | LU X J, WINTRODE P L, SUREWICZ W K. β-Sheet Core of Human Prion Protein Amyloid Fibrils as Determined by Hydrogen/Deuterium Exchange[J]. Proc Natl Acad Sci U S A, 2007, 104(5): 1510-1515. DOI:10.1073/pnas.0608447104 |
[19] | ZHANG L Y, ZHENG H Z, LONG Y J, et al. CdTe Quantum Dots as a Highly Selective Probe for Prion Potein Detection: Colorimetric Qualitative, Semi-Quantitative and Quantitative Detection[J]. Talanta, 2011, 83: 1716-1720. DOI:10.1016/j.talanta.2010.11.075 |
[20] | D?LLEFELD H, WELLER H, EYCHMULLER A. Particle-Particle Interactions in Semiconductor Nanocrystal Assemblies[J]. Nano Letters, 2001, 1(5): 267-269. DOI:10.1021/nl015524r |
[21] | MEDINTZ I L, CLAPP A R, MATTOUSSI H, et al. Self-Assembled Nanoscale Biosensors Based on Quantum Dot FRET Donors[J]. Nature Materials, 2003, 2(9): 630-638. DOI:10.1038/nmat961 |
[22] | CLAPP A R, MEDINTZ I L, MAURO J M, et al. Fluorescence Resonance Energy Rransfer between Quantum Dot Donors and Dye-Labeled Protein Acceptors[J]. J Am Chem Soc, 2004, 126(1): 301-310. DOI:10.1021/ja037088b |
[23] | LI J, HE X W, WU Y L, et al. Determination of Lysozyme at the Nanogram Level by a Resonance Light-Scattering Technique with Functionalized CdTe Nanoparticles[J]. Anal Sci, 2007, 23(3): 331-335. DOI:10.2116/analsci.23.331 |