|
- 2018
带非正定临近项的乘子交替方向法的收敛速率
|
Abstract:
研究了带非正定临近正则项的乘子交替方向法(ADMM)的收敛速度.通过引入松弛因子改进拉格朗日乘子的迭代步长,并在适当的参数条件下建立了带非正定临近正则项的ADMM在遍历意义下的收敛速率.
In this paper, we mainly investigate the convergence rate of ADMM with a positive-indefinite proximal term. We improve the iterative step size of the Lagrangian multiplier by introducing a relaxation factor, and establish the convergence rate of ADMM with a positive-indefinite proximal term in the ergodic sense under suitable assumptions on parameters
[1] | ZHANG X Q, BURGER M, OSHER S. A Unified Primal-Dual Algorithm Framework Based on Bergman Iteration[J]. J Sci Comput, 2011, 46(1): 20-46. DOI:10.1007/s10915-010-9408-8 |
[2] | HE B S, LIAO L Z, HAN D, et al. A New Inexact Alternating Directions Method for Monotone Variational Inequalities[J]. Math Program, 2002, 92(1): 103-118. DOI:10.1007/s101070100280 |
[3] | HE B S, MA F, YUAN X M. Linearized Alternating Direction Method of Multipliers Via Positive-Indefinite Proximal Regularization for Convex Programming[DB/OL]. (2016-7-31)[2017-5-20]. http://www.optimization-online.org/DB_HTML/2016/07/5569.html. |
[4] | HE B S, MA F, YUAN X M. Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-Block Separable Convex Minimization Problems[DB/OL]. (2016-9-15)[2017-5-20]. http://www.optimization-online.org/DB_HTML/2016/09/5631.html. |
[5] | GLOWINSKI R, MARROCCO A. Sur l'approximation, Paréléments Finis D'ordre 1, et la Résolution, par Pénalisation-Dualité d'une Classe de Problémes de Dirichlet non Linéaires[J]. Journal of Equine Veterinary Science, 1975, 2(R-2): 41-76. |
[6] | GABAY D, MERCIER B. A Dual Algorithm for the Solution of Nonlinear Variational Problems Via Finite Element Approximation[J]. Comput Math Appl, 1976, 2(1): 17-40. DOI:10.1016/0898-1221(76)90003-1 |
[7] | YANG J F, YUAN X M. Linearized Augmented Lagrangian and Alternating Direction Methods for Nuclear Norm Minimization[J]. Math Comp, 2013, 82(281): 301-329. |