全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

带非正定临近项的乘子交替方向法的收敛速率
On the Convergence Rate of ADMM with a Positive-Indefinite Proximal Term

DOI: 10.13718/j.cnki.xdzk.2018.03.015

Keywords: 凸规划问题, 交替方向法, 非正定临近项, 收敛速率
convex programming problem
, alternating direction method of multipliers, positive-indefinite proximal term, convergence rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了带非正定临近正则项的乘子交替方向法(ADMM)的收敛速度.通过引入松弛因子改进拉格朗日乘子的迭代步长,并在适当的参数条件下建立了带非正定临近正则项的ADMM在遍历意义下的收敛速率.
In this paper, we mainly investigate the convergence rate of ADMM with a positive-indefinite proximal term. We improve the iterative step size of the Lagrangian multiplier by introducing a relaxation factor, and establish the convergence rate of ADMM with a positive-indefinite proximal term in the ergodic sense under suitable assumptions on parameters

References

[1]  ZHANG X Q, BURGER M, OSHER S. A Unified Primal-Dual Algorithm Framework Based on Bergman Iteration[J]. J Sci Comput, 2011, 46(1): 20-46. DOI:10.1007/s10915-010-9408-8
[2]  HE B S, LIAO L Z, HAN D, et al. A New Inexact Alternating Directions Method for Monotone Variational Inequalities[J]. Math Program, 2002, 92(1): 103-118. DOI:10.1007/s101070100280
[3]  HE B S, MA F, YUAN X M. Linearized Alternating Direction Method of Multipliers Via Positive-Indefinite Proximal Regularization for Convex Programming[DB/OL]. (2016-7-31)[2017-5-20]. http://www.optimization-online.org/DB_HTML/2016/07/5569.html.
[4]  HE B S, MA F, YUAN X M. Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-Block Separable Convex Minimization Problems[DB/OL]. (2016-9-15)[2017-5-20]. http://www.optimization-online.org/DB_HTML/2016/09/5631.html.
[5]  GLOWINSKI R, MARROCCO A. Sur l'approximation, Paréléments Finis D'ordre 1, et la Résolution, par Pénalisation-Dualité d'une Classe de Problémes de Dirichlet non Linéaires[J]. Journal of Equine Veterinary Science, 1975, 2(R-2): 41-76.
[6]  GABAY D, MERCIER B. A Dual Algorithm for the Solution of Nonlinear Variational Problems Via Finite Element Approximation[J]. Comput Math Appl, 1976, 2(1): 17-40. DOI:10.1016/0898-1221(76)90003-1
[7]  YANG J F, YUAN X M. Linearized Augmented Lagrangian and Alternating Direction Methods for Nuclear Norm Minimization[J]. Math Comp, 2013, 82(281): 301-329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133