%0 Journal Article %T 带非正定临近项的乘子交替方向法的收敛速率<br>On the Convergence Rate of ADMM with a Positive-Indefinite Proximal Term %A 王逸云 %A 欧小庆 %A 李高西< %A br> %A WANG Yi-yun %A OU Xiao-qing %A LI Gao-xi %J 西南大学学报(自然科学版) %D 2018 %R 10.13718/j.cnki.xdzk.2018.03.015 %X 研究了带非正定临近正则项的乘子交替方向法(ADMM)的收敛速度.通过引入松弛因子改进拉格朗日乘子的迭代步长,并在适当的参数条件下建立了带非正定临近正则项的ADMM在遍历意义下的收敛速率.<br>In this paper, we mainly investigate the convergence rate of ADMM with a positive-indefinite proximal term. We improve the iterative step size of the Lagrangian multiplier by introducing a relaxation factor, and establish the convergence rate of ADMM with a positive-indefinite proximal term in the ergodic sense under suitable assumptions on parameters %K 凸规划问题 %K 交替方向法 %K 非正定临近项 %K 收敛速率< %K br> %K convex programming problem %K alternating direction method of multipliers %K positive-indefinite proximal term %K convergence rate %U http://xbgjxt.swu.edu.cn/jsuns/html/jsuns/2018/3/201803015.htm