|
- 2018
不定方程x(x+1)(x+2)(x+3)=33y(y+1)(y+2)(y+3)的整数解的研究
|
Abstract:
$主要运用Pell方程、递推序列、同余式及(非)平方剩余等一些初等的证明方法,对不定方程
$
x(x + 1)(x + 2)(x + 3) = 33y(y + 1)(y + 2)(y + 3)
$
的解进行了研究.证明了该不定方程仅有1组正整数解(x,y)=(9,3).同时给出了不定方程(x2+3x+1)2-33y2=-32的全部整数解.$
$In this paper, with such elementary methods as Pell equation, recurrence sequence, congruent form and quadratic (non-)residue, the author studies the diophantine equation
$
x(x + 1)(x + 2)(x + 3) = 33y(y + 1)(y + 2)(y + 3)
$
and shows that its only solution in positive integers is (x, y))=(9, 3). She also obtains all the integer solutions of the diophantine equation (x2+3x+1)2-33y2=-32.
[1] | DUAN H M, ZHENG J M. On Diophantine Equation x(x+1)(x+2)(x+3)=14y(y+1)(y+2)(y+3)[J]. Joumal of Southwest Jiaotong University(English Edition), 2009, 17(1): 90-93. |
[2] | 张洪, 罗明. 关于不定方程x(x+1)(x+2)(x+3)=Dy(y+1)(y+2)(y+3)(其中D=21, 23)[J]. 重庆工商大学学报(自然科学版), 2015, 32(7): 56-61. |
[3] | 徐学文. 关于不定方程y(y+1)(y+2)(y+3)=p2kx(x+1)(x+2)(x+3)[J]. 华中师范大学学报(自然科学版), 1997, 31(3): 257-259. |
[4] | COHN J H E. The Diophantine Equation y(y+1)(y+2)(y+3)=2x(x+1)(x+2)(x+3)[J]. Pacific J Math, 1971, 37(2): 331-335. DOI:10.2140/pjm |
[5] | 郭凤明, 罗明. 关于不定方程x(x+1)(x+2)(x+3)=10y(y+1)(y+2)(y+3)[J]. 西南师范大学学报(自然科学版), 2013, 38(10): 13-16. |
[6] | 段辉明, 杨春德. 关于不定方程x(x+1)(x+2)(x+3)=19y(y+1)(y+2)(y+3)[J]. 四川师范大学学报(自然科学版), 2009, 32(1): 60-63. |