全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

不定方程x(x+1)(x+2)(x+3)=33y(y+1)(y+2)(y+3)的整数解的研究
A Research of the Integer Solution of the Diophantine Equation x(x+1)(x+2)(x+3)=33y(y+1)(y+2)(y+3)

DOI: 10.13718/j.cnki.xdzk.2018.04.006

Keywords: 不定方程, 整数解, 递归数列, 平方剩余
diophantine equation
, integer solution, recurrence sequence, quadratic remainder

Full-Text   Cite this paper   Add to My Lib

Abstract:

$主要运用Pell方程、递推序列、同余式及(非)平方剩余等一些初等的证明方法,对不定方程 $ x(x + 1)(x + 2)(x + 3) = 33y(y + 1)(y + 2)(y + 3) $ 的解进行了研究.证明了该不定方程仅有1组正整数解(xy)=(9,3).同时给出了不定方程(x2+3x+1)2-33y2=-32的全部整数解.$
$In this paper, with such elementary methods as Pell equation, recurrence sequence, congruent form and quadratic (non-)residue, the author studies the diophantine equation $ x(x + 1)(x + 2)(x + 3) = 33y(y + 1)(y + 2)(y + 3) $ and shows that its only solution in positive integers is (x, y))=(9, 3). She also obtains all the integer solutions of the diophantine equation (x2+3x+1)2-33y2=-32.

References

[1]  DUAN H M, ZHENG J M. On Diophantine Equation x(x+1)(x+2)(x+3)=14y(y+1)(y+2)(y+3)[J]. Joumal of Southwest Jiaotong University(English Edition), 2009, 17(1): 90-93.
[2]  张洪, 罗明. 关于不定方程x(x+1)(x+2)(x+3)=Dy(y+1)(y+2)(y+3)(其中D=21, 23)[J]. 重庆工商大学学报(自然科学版), 2015, 32(7): 56-61.
[3]  徐学文. 关于不定方程y(y+1)(y+2)(y+3)=p2kx(x+1)(x+2)(x+3)[J]. 华中师范大学学报(自然科学版), 1997, 31(3): 257-259.
[4]  COHN J H E. The Diophantine Equation y(y+1)(y+2)(y+3)=2x(x+1)(x+2)(x+3)[J]. Pacific J Math, 1971, 37(2): 331-335. DOI:10.2140/pjm
[5]  郭凤明, 罗明. 关于不定方程x(x+1)(x+2)(x+3)=10y(y+1)(y+2)(y+3)[J]. 西南师范大学学报(自然科学版), 2013, 38(10): 13-16.
[6]  段辉明, 杨春德. 关于不定方程x(x+1)(x+2)(x+3)=19y(y+1)(y+2)(y+3)[J]. 四川师范大学学报(自然科学版), 2009, 32(1): 60-63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133