|
- 2017
二维不可压缩 Navier--Stokes--Landau--Lifshitz 方程组的整体强解
|
Abstract:
考虑了不可压缩 Navier--Stokes--Landau--Lifshitz 耦合模型在二维空间中的Cauchy 问题, 假设在初值密度满足$\rho_0>0$及初值能量具备$\|\rho_0^\frac{1}{2}\mathbf{u}_0\|_{L^2}^2+\|\nabla\mathbf{d}_0\|_{L^2}^2< \varepsilon_0$足够小的条件下, 利用能量方法证明了整体强解的存在唯一性.
: The Cauchy problem for incompressible Navier--Stokes--Landau--Lifshitz equations in two-dimensional space is solved by the following assumptionsthe initial density satisfies $\rho_0>0$,the initial energy $\|\rho_0^\frac{1}{2}\mathbf{u}_0\|_{L^2}^2+\|\nabla\mathbf{d}_0\|_{L^2}^2< \varepsilon_0$ is suitably small,and the global existence and uniqueness of the strong solutions are proved by energy method
[1] | Kim H.A Blow Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations[J].SIAM journal on mathematical analysis, 2006, 37(5):1417-1434 |
[2] | GUO B L, DING S J.Landau-Lifschitz Equations[M]. Singapore, World Scientific, 2008. |
[3] | Wen H Y, Ding S J.Solutions of incompressible hydrodynamic flow of liquid crystals[J].Nonlinear Analysis: Real World Applications, 2011, 12(3):1510-1531 |
[4] | Lin F H, Lin J Y, Wang C Y.Liquid crystal flows in two dimensions[J].Arch. Ration. Mech. Anal, 2010, 197(1):297-336 |
[5] | 丁时进.液晶模型的分析理论[J].华南师范大学学报自然科学版, 2013, 45(3):1-7 |
[6] | Huang T, Wang C Y, Wen H Y.Strong solutions of the compressible nematic liquid crystal flow[J].J. Diff. Eqs, 2012, 252(3):2222-2265 |
[7] | Ladyzhenskaya O A, Solonnikov V A.Unique solvability of an initial and boundary value problem for viscous incompressible nonhomogeneous fluids[J].Journal of Soviet Mathematics, 1978, 9(5):697-749 |
[8] | Fan J, Gao H, Guo B.Regularity criteria for the Navier--Stokes--Landau--Lifshitz system[J].Journal of Mathematical Analysis and Applications, 2010, 363(1):29-37 |
[9] | Zhai X, Li Y, Yan W.Global solutions to the Navier--Stokes--Landau--Lifshitz system[J]., 2015, :- |
[10] | Jun Choe H, Kim H.Strong solutions of the Navier--Stokes equations for nonhomogeneous incompressible fluids[J].Communications in Partial Differential Equations, 2003, 28(5):1183-1201 |
[11] | Ding S J, Huang J R, Xia F G.Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum[J].Filomat, 2013, 27(7):1247-1257 |
[12] | Nirenberg L.On elliptic partial differential equations[J].Annali della Scuola Normale Superiore di Pisa--Classe di Scienze, 1959, 13(2):115-162 |
[13] | Galdi G P.An introduction to the mathematical theory of the Navier-Stokes equations. Linearized Steady Problems, Vol.1, Springer Tracts in Natural Philosophy. Vol.38[M], New York, Springer-Verlag, 1994. |