%0 Journal Article %T 二维不可压缩 Navier--Stokes--Landau--Lifshitz 方程组的整体强解<br>Global Smooth Solutions for the 2D incompressibleNavier--Stokes--Landau--Lifshitz equations %A 黄丙远 黄金锐 奚悦 %J 华南师范大学学报(自然科学版) %D 2017 %R 10.6054/j.jscnun.2017167 %X 考虑了不可压缩 Navier--Stokes--Landau--Lifshitz 耦合模型在二维空间中的Cauchy 问题, 假设在初值密度满足$\rho_0>0$及初值能量具备$\|\rho_0^\frac{1}{2}\mathbf{u}_0\|_{L^2}^2+\|\nabla\mathbf{d}_0\|_{L^2}^2< \varepsilon_0$足够小的条件下, 利用能量方法证明了整体强解的存在唯一性.<br>: The Cauchy problem for incompressible Navier--Stokes--Landau--Lifshitz equations in two-dimensional space is solved by the following assumptionsthe initial density satisfies $\rho_0>0$,the initial energy $\|\rho_0^\frac{1}{2}\mathbf{u}_0\|_{L^2}^2+\|\nabla\mathbf{d}_0\|_{L^2}^2< \varepsilon_0$ is suitably small,and the global existence and uniqueness of the strong solutions are proved by energy method %U http://journal.scnu.edu.cn:8080/jwk_xbzrb/CN/abstract/abstract3853.shtml